项目名称: 基于特征谱图解析的鱼类行为模式识别

项目编号: No.21307150

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 环境科学、安全科学

项目作者: 姜安

作者单位: 中国科学院生态环境研究中心

项目金额: 26万元

中文摘要: 水资源是人类赖以生存与发展的宝贵资源。利用生物预警技术对水质进行在线监测是目前研究的热点,然而生物预警技术的灵敏度和特异性受限,成为制约该技术推广的关键因素。本项目在特征谱图解析的基础上,对鱼类行为进行模式识别,具有较强的科学意义和现实意义。本项目拟研制新型生物传感器,并搭建实验装置,采集8个通道鱼类运动信号的特征谱图;然后,基于EMD算法对特征谱图进行解析,并运用信息融合技术对8通道谱图数据进行特征提取及综合分析;最后,研究基于先验信息SVM的鱼类行为模型建立方法,利用虚拟样本技术生成充足的训练样本和验证样本,对所建模型进行验证。该研究将特征谱图解析和模式识别应用于生物预警,丰富和完善了生物预警技术,显著提高了生物预警技术的灵敏度和特异性。

中文关键词: 水质安全;特征谱图;模式识别;鱼类行为;

英文摘要: It is recognized that water resources are of vital importance to ecology as well as the growing prosperity. On-line bio-monitoring and warning systems based on biotechnology have been widely used for evaluating the water quality. However, the application of these methods was restricted because of the low sensitivity and specificity. In order to monitoring the water pollution more effectively, we design a new pattern recognition system based on the feature spectrum of fish behavior. A novel bio-sensor monitor system will be established, and the feature spectrum can be collected from eight channels containing the target fishes. Meanwhile, EMD method will be used to analyze the feature spectrum, and the information of fish behavior from eight channels will be extracted by multisensor information fusion technology. The SVM based on prior information will be used to establish the model of fish behavior. For validating the model, sufficient training and test samples are generated by virtual sample technique. The study applies the technology of spectrum analysis and pattern recognition to biological early warning, and will dramatically enhance the sensitive and specificity of biological warning technique.

英文关键词: water safety;feature spectrum;pattern recognition;fish behavior;

成为VIP会员查看完整内容
0

相关内容

报告 |《数字碳中和白皮书》(附下载)
专知会员服务
89+阅读 · 2021年12月31日
【博士论文】开放环境下的度量学习研究
专知会员服务
46+阅读 · 2021年12月4日
可视化与人工智能交叉研究综述
专知会员服务
69+阅读 · 2021年11月19日
专知会员服务
25+阅读 · 2021年4月2日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
专知会员服务
219+阅读 · 2020年8月1日
【博士论文】开放环境下的度量学习研究
专知
7+阅读 · 2021年12月4日
IJCAI 2021 | 不确定性感知小样本图像分类模型,实现SOTA性能
微软研究院AI头条
0+阅读 · 2021年8月19日
【资源】图像分割/显著性检测数据集列表
专知
13+阅读 · 2019年5月22日
已删除
德先生
53+阅读 · 2019年4月28日
一文看懂常用特征工程方法
AI研习社
17+阅读 · 2018年5月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
11+阅读 · 2018年5月13日
小贴士
相关主题
相关VIP内容
报告 |《数字碳中和白皮书》(附下载)
专知会员服务
89+阅读 · 2021年12月31日
【博士论文】开放环境下的度量学习研究
专知会员服务
46+阅读 · 2021年12月4日
可视化与人工智能交叉研究综述
专知会员服务
69+阅读 · 2021年11月19日
专知会员服务
25+阅读 · 2021年4月2日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
专知会员服务
219+阅读 · 2020年8月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员