项目名称: 上转换纳米光触媒及纳米药物的设计、合成与性能研究

项目编号: No.21273203

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李正全

作者单位: 浙江师范大学

项目金额: 80万元

中文摘要: 上转换纳米材料由于其特殊的光学性能,已被广泛应用于荧光探针、生物成像、生物分子检测等生命科学领域。然而,怎样将上转换纳米材料由荧光工具变成光动力治疗工具,还是一个急需探索的课题。纳米二氧化钛是一种广泛使用的光触媒材料,其在紫外光激发下可以产生自由基,已用于体外杀菌和有机物降解等诸多领域。但由于紫外光对人体的毒副作用和穿透性差等缺点,如何将其用于活体组织做纳米药物,也是一个挑战。在本项目中,我们拟将上转换材料和二氧化钛进行有效复合,互相取长补短,共同构建成新型的纳米光触媒及纳米药物。这种材料可使用近红外光照射,通过上转换过程产生紫外光且被二氧化钛吸收而产生自由基,从而可用于生物深层组织的光动力治疗,提高传统光动力疗法的作用深度和范围。而且,自由基的杀毒能力也强于传统的单态氧。另一方面,这种复合的光触媒材料,可利用太阳光中的红外波段的光,也将有望提高人们对太阳能的利用效率。

中文关键词: 上转换;近红外;核壳结构;光催化;纳米药物

英文摘要: Owing to their unique optical properties, upconversion nanocrystals have been widely used in biological science such as biolabels, imaging and detection of biomolecules. However, it is still rarely explored that how to harness these fluorescent tools for therapy applications. TiO2 is a widely used photocatalyst for sterilization and degradation of organice pollution, due to generation of free radicals upon UV irradiation. But it is a big challenge to apply it for in-vivo biological system as nanomedicines, because of the phototoxicity and low penetration depth of UV light. In this project, we bring forward an idea to produce new kinds of photocatalysts and nanomedicines which consist of upconversion nanocrystals and TiO2. These materials will combine the merits from both types of materials and overcome their inherent stortcomings. Upon the excitation of NIR light, these materials can give free radicals from TiO2 through upconverting the NIR photons to UV photons. As such, this kind of materials will be applicable to deep biological tissue and improve photodynamic therapy effect. Furthermore, the generated free radicals from the nanocomposites are stronger oxdizers than singlet oxygen from tranditional photosensitizers. On the other hand, these nanocomposites also possess great potential to enhance the utilizatio

英文关键词: upconversion;near infrared;core-shell structure;photocatalysis;nanomedicine

成为VIP会员查看完整内容
0

相关内容

专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
31+阅读 · 2021年5月7日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
38+阅读 · 2020年3月10日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员