项目名称: 区间参数型不确定优化问题的进化算法研究

项目编号: No.61463045

项目类型: 地区科学基金项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 李和成

作者单位: 青海师范大学

项目金额: 42万元

中文摘要: 不确定性广泛存在于信息科学、计算机科学、运筹学和工程管理领域. 不确定参数的出现产生了大量的不确定优化问题,主要有随机规划、模糊规划和区间规划. 对这些不确定问题,传统方法往往很难求解. 在这三类问题中,随机规划和模糊规划分别需要概率分布和模糊隶属度函数,而区间规划利用区间描述变量的不确定性,只需要少量信息即可获得参数的上下界,因此在不确定性建模方面体现了很好的方便性和经济性. .本项目主要研究区间参数型不确定优化问题的进化算法,主要包括具有区间参数的单目标优化问题、带区间参数的双层规划和带区间参数的多目标优化问题. 通过充分考虑问题的结构特点和最优性特征,设计求解对应问题的进化算法并分析收敛性. 项目的研究成果将有效弥补不确定性优化方法的理论成果,并能有效解决涉及不确定性参数的工程优化问题.

中文关键词: 区间参数优化问题;进化算法;双层规划;多目标优化;最优解

英文摘要: Uncertainty widely exists in information science, computer science, operational research and engineering management, etc. Lots of uncertain optimization problems are generated when uncertain parameters are involved, such as stochastic programming, fuzzy programming as well as interval programming. Traditional approaches always show poor performance in dealing with these uncertain problems. In three classes of problems, both stochastic programming and fuzzy programming need probability distributions and fuzzy membership functions, respectively, whereas interval programming use intervals to describe the uncertainty of variables, which only requires a small amount of information for obtaining the lower and upper bounds of parameters. Hence, interval programming is conveninent and economical in dealing with uncertain problems. The project is focused on evolutionary algorithms for solving uncertain optimization problems with interval parameters, including single-objective optimization problems with interval parameters, bilevel programming problems with interval parameters and multi-objective optimization involving interval parameters. Making full use of problem-specific features and optimality conditions, we develop evolutionary algorithms for each class of problems and analyze the convergence of algorithms. The research will enrich the theoretical results of uncertain optimization and can promote practical engineering problem with uncertainty to be solved.

英文关键词: Optimization problems with interval parameters;Evolutionary algorithm;Bilevel programming;Multi-objective optimization;Optimal solutions

成为VIP会员查看完整内容
3

相关内容

NeurIPS 2021 | 用简单的梯度下降算法逃离鞍点
专知会员服务
24+阅读 · 2021年12月6日
专知会员服务
20+阅读 · 2021年10月3日
逆优化: 理论与应用
专知会员服务
37+阅读 · 2021年9月13日
专知会员服务
59+阅读 · 2021年6月1日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
26+阅读 · 2021年4月21日
专知会员服务
74+阅读 · 2020年12月7日
专知会员服务
43+阅读 · 2020年7月29日
对凸优化(Convex Optimization)的一些浅显理解
PaperWeekly
1+阅读 · 2022年1月29日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
机器学习中的最优化算法总结
人工智能前沿讲习班
22+阅读 · 2019年3月22日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
变分自编码器VAE:一步到位的聚类方案
PaperWeekly
25+阅读 · 2018年9月18日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
15+阅读 · 2021年2月19日
小贴士
相关VIP内容
NeurIPS 2021 | 用简单的梯度下降算法逃离鞍点
专知会员服务
24+阅读 · 2021年12月6日
专知会员服务
20+阅读 · 2021年10月3日
逆优化: 理论与应用
专知会员服务
37+阅读 · 2021年9月13日
专知会员服务
59+阅读 · 2021年6月1日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
26+阅读 · 2021年4月21日
专知会员服务
74+阅读 · 2020年12月7日
专知会员服务
43+阅读 · 2020年7月29日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
微信扫码咨询专知VIP会员