项目名称: 面向信息安全芯片的物理不可克隆函数电路建模与实现

项目编号: No.61474068

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 汪鹏君

作者单位: 宁波大学

项目金额: 87万元

中文摘要: 物理不可克隆函数(Physical Unclonable Functions, PUF)电路属于芯片特征识别电路。它通过提取制造过程中无法避免引入的工艺偏差,产生无限多个特有的数据信息,具有唯一性、随机性和不可克隆性等特性,能有效实现身份认证和密钥产生。将其应用于信息安全芯片中,可以极大地提高密钥信息的安全性,达到防御各类攻击的目的。鉴此,本项目旨在通过对CMOS电路工艺偏差的研究,揭示芯片纹理特征与激励-响应之间的内在关系,提出新型PUF电路的集成电路设计方法,实现PUF电路与安全芯片的硬件复用。主要研究内容包括:PUF电路的模型构建及问题属性论证;高性能低成本PUF电路的结构设计;PUF电路与密码算法的融合应用;PUF电路的性能评测与优化等。研究成果将为新一代集成电路设计提供理论依据和方法指导,推动高性能安全芯片的广范应用。

中文关键词: 集成电路设计;工艺偏差;物理不可克隆函数;信息安全

英文摘要: Physical Unclonable Functions (PUF) is a fingerprint identification chip. The technique exploits static process variation across manufacturing process of integrated circuit to produce numerious unique, random and unclonable data. Because of its characteristics, PUF circuit can effectively fulfill authentication and key generation. With integrating into information security chip, PUF circuit greatly improve the security of key information, and resist various types of attacks. In project, goal of researching process variation is to reveal inherent relationship between physical features and challenge response pairs, to propose novel PUF circuit design technology, and implement hardware reuse technique between PUF circuit and security chip. Research domains contain mathematical modeling of PUF circuit and argumentation of property problem, designing of high-performance and low-cost PUF circuit, combining PUF circuit with cryptographic algorithms, and evaluation and optimization of PUF circuit performance. Research results will build a theoretical basis and guidance for the next generation of integrated circuit design, and promote the widespread application of high-performance security chip.

英文关键词: Integrated circuit design;Process variation;Physical unclonable function;Information security

成为VIP会员查看完整内容
0

相关内容

深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
专知会员服务
76+阅读 · 2021年6月28日
专知会员服务
50+阅读 · 2021年5月19日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
专知会员服务
49+阅读 · 2020年6月14日
图模型在信息流推荐的原理和实践
专知
0+阅读 · 2022年1月30日
神经网络的基础数学,95页pdf
专知
22+阅读 · 2022年1月23日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【数字孪生】一文读懂数字孪生的应用及意义
产业智能官
43+阅读 · 2018年9月28日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月7日
Arxiv
25+阅读 · 2018年8月19日
Arxiv
10+阅读 · 2018年4月19日
小贴士
相关VIP内容
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
专知会员服务
76+阅读 · 2021年6月28日
专知会员服务
50+阅读 · 2021年5月19日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
专知会员服务
49+阅读 · 2020年6月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员