项目名称: 基于概率优化的立体放疗机器人肿瘤位置实时跟踪模型

项目编号: No.61305108

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 郁树梅

作者单位: 苏州大学

项目金额: 26万元

中文摘要: 对于立体放疗机器人,呼吸运动同步跟踪是其应用于颅外肿瘤治疗需要解决的关键问题。在呼吸运动同步跟踪技术中,体表标记与肿瘤位置的关联模型具有核心地位。目前射波刀系统从确定性系统角度判定呼吸运动时相以及建立肿瘤和体表标记的关联模型,没有考虑传感器数据的噪声分布情况,导致时相状态判断不准、关联结果不能收敛到真值;另外,已有的医疗系统以固定频率重定位肿瘤位置并更新关联模型,导致X射线对人体照射次数较多,对人体的健康造成一定的负面影响。本课题从随机系统的角度,采用假设检验的方法判断呼吸运动时相,以概率优化的方法分析肿瘤与体表标记之间的相关性并建立其关联模型,研究传感器数据对关联模型稳定性的影响,提出能够计算出最大程度提高模型稳定性的最佳观察点的方法,最终得到高精度、高鲁棒性的呼吸运动同步跟踪方案。本课题的研究不仅能为其他研究人员提供一种新的思路,而且对于发展我国立体定向放射医疗技术具有重要的现实意义。

中文关键词: 放疗机器人;呼吸跟踪;UT变换;;

英文摘要: Respiratory tumor tracking is the key problem for the robotic stereotaxic radiosurgery in curing extracranial tumors. The correlation model for the marker position and tumor position is the core in the respiratory tumor tracking technology. The existed Cyberknife System determines the respiration phase and establishes the correlation model from the point view of a definite system. The lack of considering the noise of the sensors' data leads to the results of respiration phase determination being incorrect and the results of the correlation model deviating from true values. Moreover, the existing Cyber Knife System re-locates tumors and updates the correlation model with a fixed frequency. This increases the X-ray irradiated doses to bodies and brings negative impact on people' s health. By using the theory of stochastic system, this project determines respiration phase by using the hypothesis testing method, analyzes the correlation between a tumor and three markers and establishes the correlation model from the point view of probability optimization, researches the sensor data's influence on the correlation model's stability, proposes a method to calculate the optimal observation point that can improve the correlation model's stability greatest, and finally achieves a respiratory tracking plan with high preci

英文关键词: radio-surgery robot;respiration tracking;UT transformation;;

成为VIP会员查看完整内容
0

相关内容

医学图像关键点检测深度学习方法研究与挑战
专知会员服务
50+阅读 · 2022年4月10日
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
34+阅读 · 2022年1月31日
专知会员服务
30+阅读 · 2021年9月23日
专知会员服务
66+阅读 · 2021年5月21日
专知会员服务
19+阅读 · 2021年5月4日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
55+阅读 · 2021年3月5日
斯坦福EE364a《凸优化》课件,301页ppt
专知会员服务
95+阅读 · 2020年7月14日
【CVPR2020-谷歌】多目标(车辆)跟踪与检测框架 RetinaTrack
专知会员服务
44+阅读 · 2020年4月10日
DynaSLAM II: 紧耦合的多物体跟踪和SLAM
计算机视觉life
1+阅读 · 2021年10月9日
【CVPR2021】基于Transformer的视频分割领域
专知
2+阅读 · 2021年4月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
19+阅读 · 2020年7月21日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
小贴士
相关VIP内容
医学图像关键点检测深度学习方法研究与挑战
专知会员服务
50+阅读 · 2022年4月10日
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
34+阅读 · 2022年1月31日
专知会员服务
30+阅读 · 2021年9月23日
专知会员服务
66+阅读 · 2021年5月21日
专知会员服务
19+阅读 · 2021年5月4日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
55+阅读 · 2021年3月5日
斯坦福EE364a《凸优化》课件,301页ppt
专知会员服务
95+阅读 · 2020年7月14日
【CVPR2020-谷歌】多目标(车辆)跟踪与检测框架 RetinaTrack
专知会员服务
44+阅读 · 2020年4月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员