项目名称: 基于卟啉和酞菁为光敏剂的单线态氧氧化反应研究

项目编号: No.21272123

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 朱义州

作者单位: 南开大学

项目金额: 80万元

中文摘要: 光敏化单线态氧氧化反应建立在对太阳能、氧气等可再生资源利用的基础上,而且常常没有反应副产物或为水,具有较高的原子经济性,符合绿色化学发展方向,具有很大的发展潜力。该反应由光敏化单线态氧产生和单线态氧氧化反应两部分组成,本项目将对这两方面进行设计优化,推动这一领域的实用性研究。 项目拟对卟啉、酞菁骨架进行进一步设计和修饰,通过引入抗氧化因素、重原子效应、单分子聚合等手段来提高光敏剂的光稳定性、增加其系间窜越效率、减少光敏剂在反应过程中的自猝灭,实现光敏剂的高效性。而且,聚合物化后的光敏剂在反应结束后很容易分离,实现循环利用。 通过在传统的Schenck-Ene反应、[2+2]和[2+4]型的单线态氧环加成反应中引入催化性或亲核性反应因素,使该类反应产生的高能量中间体能够迅速转化为较稳定的产物类型,避免其在较长光照时间内的非定向分解,提高产物选择性和反应效率。

中文关键词: 光化学;单线态氧;三线态能量转移;光敏剂;卟啉

英文摘要: Solar energy and oxygen, an renewable resource,have been used as driving force and reactant respectively in photosensitized singlet oxygen oxidation reaction which often has no byproduct or produce water as the byproduct. That permits it is of great potential for improvment because of its high atom economy and environment benign feature. The reaction can be divided into two parts, the photosensitized production of singlet oxygen and the singlet oxygen oxidation. Which will be optimized in this project, and expected to therefore expand the usefullness of this type raction. First, the porphyrin and phthalocyanine skeleton are further designed and modified by introducing anti-oxidative factors, heavy atom, and single molecule polymerization. That will improve the light stability of the photosensitizer, while increase its intersystem crossing efficiency and reduce its self-quenching agent during the reaction. Moreover, the polymerized photosensitizer will benefit the separation after the reaction is completed, and afford convenience for reuse. Response to traditional Schenck-Ene reaction, [2+2] and [2+4]-type cycloaddition reaction of singlet oxygen, the introduction of catalytic reactive factor, or nucleophilic reactive factor will cause a fast conversion from high-energy intermediates produced in situ to a stable

英文关键词: photochemistry;singlet oxygen;triplet energy transfer;photosensitizer;porphyrin

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
51+阅读 · 2020年12月28日
深度学习模型终端环境自适应方法研究
专知会员服务
31+阅读 · 2020年11月13日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
基于Prometheus的K8S监控在小米的落地
DBAplus社群
16+阅读 · 2019年7月23日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员