项目名称: 应用光镊技术研究活体内毛细管中红细胞的变形与流动

项目编号: No.11302220

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 钟敏成

作者单位: 合肥工业大学

项目金额: 23万元

中文摘要: 由于动物体内环境的复杂性,在体外或培养环境下的测量结果不能完全准确地反映在体内的实际情况。研究红细胞在活体动物体内微血管中的流动和变形,有助于了解微循环的机理,因此研究测量红细胞在体内毛细血管中的流动与变形能力对生命科学、医学研究等领域具有重要意义。本申请拟应用光镊研究红细胞在体内血管中的变形与流动。内容包括:通过建立微流道系统研究光镊力学参数的测量方法,解决毛细血管中捕获微粒时的光阱力学参数测量方法学问题;应用体内光镊技术捕获动物体内毛细管中红细胞并固定于血流中,观察红细胞在流场中的变形,研究非自由红细胞在体内流场中的变形与流动;应用体内光镊技术操控功能将红细胞操控至血管边沿,研究体内红细胞粘附于和从血管壁脱落后的运动规律。通过以上研究,明确非自由红细胞在毛细流场中的变形系数与血流压力差的关系,建立红细胞从血管壁脱落后的运动模型,为阐明红细胞流变学特性与红细胞生理学现象间的联系做基础。

中文关键词: 体内光镊;光阱刚度;红细胞形变;光场调控;

英文摘要: The biological research in vitro may not reflect the biological activities in vivo accurately due to the complexity of the in vivo environment. Therefore, biological studies in vivo, especially within living animals are important to verify our knowledge acquired from the in vitro studies. The studies of in vivo biological activities will be greatly accelerated with a tool of trapping and manipulating biological cells within living animals. The deformation and motion of red blood cells (RBC) in capillary flow in vivo is helpful to understand the micro-circulation, so studying the deformation and motion of red blood cells in capillary flow in vivo is important for the life sciences and medical research. This application is aimed to study the deformation and motion od red blood cells in vivo using in vivo optical trapping technology. Firstly, we will establish a micro-flow channel system for calibrating the parameters of optical trapping in blood capillary in vivo. Secondly, the red blood cells will be trapped and fixed in the blood flow with optical trap. The red blood cells will deform in the flow. We study of the deformation of non-free red blood cells in the capillary flow within the living animals. Thirdly, the red blood cell will be manipulated to the vessel edge. When detached from the vessel wall, the RBCs

英文关键词: in vivo optical tweezers;optical stiffness;RBC deformation;complex light shaping;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
77+阅读 · 2021年7月23日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
34+阅读 · 2020年11月26日
基于深度学习的手语识别综述
专知会员服务
46+阅读 · 2020年5月18日
【CVPR2020】图神经网络中的几何原理连接
专知会员服务
56+阅读 · 2020年4月8日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2021年5月25日
小贴士
相关主题
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员