项目名称: 基于整个演化历史信息的进化算法研究及其应用
项目编号: No.61300149
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 赵吉
作者单位: 江南大学
项目金额: 23万元
中文摘要: 本课题提出一种基于整个演化历史信息的进化算法(EA-EHI),并对其进行理论分析以及在生化过程动力学建模中的应用研究。首先建立二维空间分割树结构记录估计解的位置和适应度值,设计逼近的快速适应度函数模型,引入无参的自适应变异机制,提出EA-EHI算法的基本流程;其次分析算法收敛性和收敛率、计算复杂性以及性能稳定性;最后研究EA-EHI算法在代谢途径反问题中的应用,即生化过程代谢途径动力学建模,根据实验数据,应用EA-EHI算法拟合微分方程,估计系统模型参数,并提出用龙格-库塔法结合正则化技术来提高系统参数估计解得精度。因此,本课题提出的EA-EHI算法以及对算法的理论分析具有重要的理论意义,在一定程度上能推动进化算法的发展;并且由于进化算法的广泛应用性,EA-EHI算法将具有重要的应用价值;此外,本课题的研究成果应用于解决代谢网络优化及系统生物学其他复杂优化问题也有较强的推广意义。
中文关键词: 进化算法;群体智能优化算法;演化历史信息;多样性维持;
英文摘要: A novel evolutionary algorithm based on the entire evolutionary historical information (EA-EHI) is proposed and the theoretical analysis and its application on dynamics modeling of biochemical processes are researched. The proposed algorithm, namely EA-EHI, uses a binary space partitioning tree structure to memorize the positions and the fitness values of the evaluated solutions. A fast fitness function approximation using the space partitioning scheme is designed and the resultant mutation operator that is parameter-less, anisotropic and adaptive is introduced. The basic process of EA-EHI algorithm is described. Then we analysis of the convergence, the convergence rate, computational complexity and performance stability of the algorithm. Finally the EA-EHI algorithm is applied to optimize the the inverse problem of metabolic pathways, that is, dynamics modeling of metabolic pathways of biochemical processes utilizing EA-EHI algorithm to approximate the differential equations and estimate the model parameters according to experimental data. In order to improve the accuracy of the system parameter estimation solutions, the Runge-Kutta method combined with regularization techniques is proposed. Therefore, the EA-EHI algorithm proposed in this subject and algorithm theory analysis has important theoretical signific
英文关键词: Evolutionary Algorithms;Swarm Intelligence Optimization Algorithms;the entire evolutionary historical information;Diversity Maintenace;