项目名称: 细胞谱系随机演化的并行算法研究

项目编号: No.11301294

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 胡煜成

作者单位: 清华大学

项目金额: 22万元

中文摘要: 随机建模和数值模拟在系统生物学研究中已成为不可或缺的重要工具。随着系统空间和时间尺度的增加,传统的串行计算已无法满足巨大的计算量的需求。在实际问题和高性能计算技术的推动下,用于模拟大规模随机系统演化的并行算法得到了大力发展。动力学蒙特卡洛(KMC)算法是一个模拟连续时间随机过程的重要算法,在物理、化学、材料和信息科学等领域有着广泛的应用。如何实现KMC算法的并行化是当前的研究热点。本项目的主旨是设计一个可靠高效的并行KMC算法,并用它来模拟空间格点模型中大量细胞复制与分化形成的细胞谱系的随机演化,着重研究负反馈调控下细胞群体的时空动力学行为及其生物意义。本项目强调运用大规模科学计算来解决系统生物学中的前沿问题,体现了交叉学科和合作创新的特点,是研究者本人在计算系统生物学方向的重要起步。

中文关键词: 蒙特卡洛算法;并行计算;细胞谱系;群体动力学;液晶

英文摘要: In the past few decades, there has been a dramatic increase in the use of stochastic modeling and simulation in system biology. The standard kinetic Monte Carlo (KMC) algorithm is an extremely efficient method to carry out serial simulations of stochastic dynamical processes. As the system size and simulation time extends, it is desirable to develop efficient parallel KMC algorithms in order to take advantage of existing and upcoming super computing capabilities. The main goal of this project is to implement an efficient semi-rigorous sub-lattice algorithm for parallel KMC simulations. This algorithm is particularly suited for shared memory parallel computing and can be easily carried out using OpenMP. The key problem we face is to optimize the strategy for selecting the time step-size, which plays an important role in determine the accuracy and efficiency of the algorithm. The practical motivation of developing this parallel algorithm is to study the stochastic evolution of a large scale cellular automata lattice model, which describes the dynamical behavior of a cell lineage system under negative control. In system biology, cell lineage is considered as the fundamental units of tissue and organ development, maintenance and regeneration. In particular we want to understand the spatial effect of negative feedbac

英文关键词: Monte Carlo method;parallel computing;cell lineage;population dynamics;liquid crystals

成为VIP会员查看完整内容
0

相关内容

【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
125+阅读 · 2021年8月25日
【干货书】机器学习优化,509页pdf
专知会员服务
146+阅读 · 2021年2月26日
专知会员服务
187+阅读 · 2021年2月4日
专知会员服务
84+阅读 · 2020年12月11日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
151+阅读 · 2020年8月27日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
182+阅读 · 2020年7月29日
【经典书】凸优化:算法与复杂度,130页pdf
最新《图嵌入组合优化》综述论文,40页pdf
【干货书】贝叶斯推断随机过程,449页pdf
专知
29+阅读 · 2020年8月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
小贴士
相关VIP内容
【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
125+阅读 · 2021年8月25日
【干货书】机器学习优化,509页pdf
专知会员服务
146+阅读 · 2021年2月26日
专知会员服务
187+阅读 · 2021年2月4日
专知会员服务
84+阅读 · 2020年12月11日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
151+阅读 · 2020年8月27日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
182+阅读 · 2020年7月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员