项目名称: 聚合物胶体颗粒定向弯曲及可控组装的模拟研究

项目编号: No.21204094

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 高分子科学

项目作者: 陆腾

作者单位: 中国科学院化学研究所

项目金额: 25万元

中文摘要: 聚合物胶体颗粒的有序组装在制造功能性复合材料方面有着巨大的潜力,通过调整其形变的大小和指向来控制组装行为是一种获得胶体颗粒有序结构的有效手段。我们拟借助蒙特卡罗方法来模拟聚合物胶体颗粒吸附在基底表面时发生诱导形变的过程,考察不同条件下形变大小、取向的变化,寻找控制聚合物胶体颗粒定量定向形变的手段。进一步我们计划采用耗散粒子动力学方法来模拟非球非全同胶体颗粒的组装行为,考察不同形状及表面性质对这一过程的影响,明晰这一复杂问题的机理,加深我们对胶体颗粒可识别性组装的认识,以期为实验研究和应用生产提供理论指导。最后,我们还将通过动力学方法模拟由形变到组装的动态过程,来考察诱导形变对组装结构动态调节,这将指导我们对新型可控的功能性材料的开发。

中文关键词: 聚合物Janus 纳米片;定向弯曲;可控组装;纳米颗粒;计算机模拟

英文摘要: The ordered self-assemblies of polymeric colloidal paticles have attracted great interest due to their great potential on the fabrication of functional materials. The Monte Carlo (MC) method will be used to simulate the buckling process of the polymeric colloidal particles under mediated conditions, e.g. adhesion surface or swelling, the influence of these inductions on the particles deformation should be investigated, and we are trying to find out an effective approach to synthesis the polymeric colloidal particles with tunable anisotropies and morphologies. Further, we will also study the self-assembly process of the colloidal particles with different shapes and anisotropies using the dissipative particle dynamics (DPD) simulations, explore the adjustment mechanism between the particle surface properties and the deformation process. Both the two simulation processes should be connected, afterwards the dynamical regulation of the tunable deformation on the controlled assembly will be investigated which could give us a guide on the fabrication of the fascinating functional composite material.

英文关键词: polymeric Janus nanosheet;oriented buckling;controlled assembly;nanoparticle;computer simulation

成为VIP会员查看完整内容
0

相关内容

【ICML2022】药物结合结构预测的几何深度学习
专知会员服务
25+阅读 · 2022年5月24日
专知会员服务
41+阅读 · 2021年10月8日
专知会员服务
12+阅读 · 2021年8月8日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
72+阅读 · 2021年5月28日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
28+阅读 · 2020年4月6日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
一派讨论·双十一首轮你买了什么东西?
少数派
0+阅读 · 2021年11月2日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
已删除
将门创投
12+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Algorithmic Foundation of Deep X-Risk Optimization
Arxiv
0+阅读 · 2022年6月2日
Arxiv
0+阅读 · 2022年5月29日
More Recent Advances in (Hyper)Graph Partitioning
Arxiv
0+阅读 · 2022年5月28日
小贴士
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
一派讨论·双十一首轮你买了什么东西?
少数派
0+阅读 · 2021年11月2日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
已删除
将门创投
12+阅读 · 2017年10月13日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员