项目名称: 基于魔数波长光学偶极阱中单原子操控的触发式单光子源研究

项目编号: No.11274213

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王军民

作者单位: 山西大学

项目金额: 88万元

中文摘要: 基于单原子操控的单光子源,具有窄的带宽、可与同类原子系综吸收线匹配、基本不受环境因素的影响(与其他单光子源相比,单光子间的不可区分性相对易于实现)等特点,在量子光学基本问题研究及量子信息处理方面都具有重要价值。本项目拟在本研究组已掌握的基于中性原子激光冷却与俘获途径制备单原子的实验技术基础上,瞄准自由空间中基于单原子量子态的制备、操控和探测的触发式单光子源,针对可消除光学偶极阱中原子跃迁频率空间位置依赖的空间非均匀频移的魔数波长光学偶极阱,主要开展以下几方面的研究工作: 1)、原子内态AC Stark频移及魔数波长的计算及铯原子魔数波长微型光学偶极阱的实验构建及相关问题研究; 2)、魔数波长微型光学偶极阱中单原子的装载、进一步冷却、内态初始化制备、俘获寿命研究; 3)、单原子的光脉冲相干激发及相应的脉冲激光系统研究; 4)、基于单原子操控的触发式单光子源的实验实现及特性测量。

中文关键词: 单原子制备与操控;触发式单光子源;魔数波长;光学偶极阱;激光冷却与俘获原子

英文摘要: Single-atom-based single-photon source has several special chracteristics, such as narrow bandwidth, wavelength matching with tha absorption line of the same atomic emsamble, not sensitive to the environment disturbing (therefore it is much more suitable for achieving nondistinguishable single photons compared with other single-photon scheme), and it is very important not only for basic researches in quantum optics field but also for applications in quantum information processing. Based on the single-atom preparation which we already realized along the technical line of the laser cooling and trapping of neutral atoms, in this proposed project we will mainly focus on the triggered single-photon source with free-space single-atom preparation, trapping, manipulation and detection, especially pay more attentions to the magic-wavelength optical dipole trap with which the position-dependant spacially inhomogeneous AC Stark shift of the desired atomic transition can be eliminated.The following main aspects will be included in this proposed project: 1).Calculation of AC Stark shift of atomic internal state and possible magic wavelength of the desired atomic transition, and implementation of the magic-wavelength optical dipole trap for single cesium atom and relevant issues; 2).Investigation of loading, furthing coolin

英文关键词: Preparation and manipulation of single atom;Triggered single-photon source;Magic wavelength;Optical dipole trap;Laser cooling and trapping of atoms

成为VIP会员查看完整内容
0

相关内容

ICML'21:一种计算用户嵌入表示的新型协同过滤方法
专知会员服务
14+阅读 · 2021年12月31日
【ICML2021】具有线性复杂度的Transformer的相对位置编码
专知会员服务
24+阅读 · 2021年5月20日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
《概率统计及其在计算中的应用》书册,384页pdf
专知会员服务
45+阅读 · 2021年1月7日
【CVPR2020-CMU】无数据模型选择,一种深度框架潜力
专知会员服务
22+阅读 · 2020年4月12日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Anomalous Instance Detection in Deep Learning: A Survey
小贴士
相关主题
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员