本文介绍今年发表在ICML'21的工作,提出了一种计算推荐系统中用户嵌入表示(embedding)的新方法,有望被用来解决冷启动问题或在线场景中及时处理新用户。方法的核心思想如下:1)对数据集中一部分用户(例如点击数较多的用户)采用传统协同过滤得到嵌入表示;2)利用这些用户的嵌入表示的加权组合去计算其他用户(例如点击数较少的用户或全新的用户)的嵌入表示。这样做的目的是利用一部分well-trained的用户表示去间接计算另一部分few-shot或zero-shot的用户表示(直接计算容易过拟合),从而提升在少样本用户或新用户上的泛化性能。同时,这种表示方法可以实现inductive learning,即模型可以灵活的处理未来出现的新用户,不需要重新训练。
该方法的核心思想很简单,但有严格的理论保障,也在公开数据集上取得了优异的结果。核心思想可以被拓展到其他推荐系统的场景和方法上,也能被用到其他领域去处理一般化的实体表征学习的问题。
论文题目:Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach