项目名称: 紧凑型高功率密度反应堆底部再淹没流动换热机理研究

项目编号: No.11275178

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 余红星

作者单位: 中国核动力研究设计院

项目金额: 98万元

中文摘要: 高功率密度核反应堆体积小、重量轻,是核动力舰船的主要选择之一。以美国和俄罗斯为首的大国在高功率密度反应堆上分别采用了板型燃料元件元件堆芯和稠密栅堆芯两种,由于紧凑的堆芯空间,上述两种反应堆的水铀比都较小,堆芯压降较普通压水堆更大,事故情况下的堆芯安全特性值得深入研究以确保反应堆安全,失水事故是压水堆必须考虑的最严重的设计基准事故,而持续有效的水源是压水堆保证余热导出的唯一有效手段,因此本文将基于宏观试验现象,针对上述两种高功率密度反应堆特殊的几何结构,研究高功率密度反应堆在发生失水事故后堆芯再淹没过程中的微观流动和传热机理,探索其再淹没过程不同于普通压水堆的深层次原因,为高功率密度反应堆失水事故情况下包壳和燃料峰值温度的预测,进一步认识上述高功率密度反应堆在极限事故工况下的安全性打下基础。并为高功率密度反应堆系统设计提供重要的理论基础。

中文关键词: 高功率密度反应堆;底部再淹没;先驱冷却;骤冷速率;机理模型

英文摘要: High nuclear power density reactors have the characteristics of small volume, light weight to make them applicable for power supply for nuclear marine. America and Russia choose plate fuel and tight lattice as the fuel design for high nuclear power density reactors respectively. Compared with standard PWRs, these two fuel designs have samaller water to uranium ratio. While, deep study is needed to ensure these high power reactors' safety under accidential conditions especially for LOCA accidents because of the higher pressure drop through the core. Sufficient cooling should be avaliable in these conditions to remove decay heat of the core. Our studies are on the basis of expremental results, aiming to find the physical mechanism of flow and heat transfer in the reflooding phases of the high power density reactors to find out the difference between them and standard reactors. It is hoped that the peak caldding temperatures will be better predicted and nuclear safety analysis can be better accomplished. This work is very meaningful because it can sustain the high power density reactors' design from the theoretical aspect.

英文关键词: High nuclear power density reactors;upflow reflood;;precursory cooling;;quench velocity;;mechanism model

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《6G智能轨道交通白皮书》未来移动通信论坛
专知会员服务
32+阅读 · 2022年4月14日
赛迪智库发布2022《安全应急数智化转型白皮书》,37页pdf
工业人工智能驱动的流程工业智能制造
专知会员服务
96+阅读 · 2022年3月9日
专知会员服务
18+阅读 · 2021年10月1日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
19+阅读 · 2021年5月30日
专知会员服务
25+阅读 · 2021年4月2日
2019中国硬科技发展白皮书 193页
专知会员服务
77+阅读 · 2019年12月13日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
17+阅读 · 2022年1月11日
小贴士
相关主题
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《6G智能轨道交通白皮书》未来移动通信论坛
专知会员服务
32+阅读 · 2022年4月14日
赛迪智库发布2022《安全应急数智化转型白皮书》,37页pdf
工业人工智能驱动的流程工业智能制造
专知会员服务
96+阅读 · 2022年3月9日
专知会员服务
18+阅读 · 2021年10月1日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
19+阅读 · 2021年5月30日
专知会员服务
25+阅读 · 2021年4月2日
2019中国硬科技发展白皮书 193页
专知会员服务
77+阅读 · 2019年12月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员