项目名称: Bi2Te3/导电聚合物/石墨烯量子阱结构复合热电材料组装及电声输运特性研究

项目编号: No.21276181

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 化学工业

项目作者: 王为

作者单位: 天津大学

项目金额: 78万元

中文摘要: 基于热电材料制备的温差电池可将大量低等级热量转变为电能,因此开发高性能热电材料具有重要意义。本研究采用电化学合成技术,设计并构制层状纳米结构Bi2Te3/导电聚合物/石墨烯复合热电材料。这种层状纳米结构形成的量子阱,通过电子局域效应保证材料良好电导率σ的同时,借助于声子边界散射大幅度降低材料的热导率κ。石墨烯经导电聚合物和Bi2Te3掺杂化合物修饰后不仅产生能量过滤效应,其禁带结构的变化使塞贝克系数α提高。同时,导电聚合物能将石墨烯有效连接起来,抑制接触点处电子输运能力降低,充分发挥量子阱结构石墨烯材料的电子输运优势。高α和σ以及低κ有利于量子阱结构Bi2Te3/导电聚合物/石墨烯复合热电材料获得高的ZT值。本项目从研究石墨烯薄膜微结构对电声输运的影响入手,将石墨烯纳米材料的微结构与宏观热电性能相关联,并建立相应的理论模型,指导量子阱结构材料的设计和制备技术优化,具有重要理论意义。

中文关键词: Bi2Te3/导电聚合物/石墨烯复合热电材料;层状纳米结构;电声输运特性;热电性能;制备技术

英文摘要: Thermoelectric power generator based on thermoelectric materials is an important renewable energy. This project focuses on the design and fabrication of Bi2Te3/conductive polymer/graphene composite thermoelectric materials by electrochemical synthetical technology. The quatum well composed of nano-layer structure can decrease the thermal conductivity of the composite materials through phonon boundary scattering effectively, while the electrical conductivity of the materials remains high. The graphene modified by conductive polymer or doped Bi2Te3 compounds possesses an energy filtration effect and the change of its forbidden band structure can improve the ZT value. At the same time, the graphene in the composite materials can be connected together by the conductive polymer, which can restrain the decrease of the electric transmission at the connecting points. So the high Seebeck coefficient, electrical conductivity and low thermal conductivity are benefit to increase the ZT value of Bi2Te3/conductive polymer/ graphene composite thermoelectric materials. This project will research the micro-structure of the nano materials and the relationship between the micro-structure and the thermoelectric performance, and propose a theoretical model. Which is important to the design and fabrication of the materials with quatu

英文关键词: Bi2Te3/conductive polymer/ graphene;nano-layer structure;transmission characteristics;thermoelectric performance;fabrication technology

成为VIP会员查看完整内容
0

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
专知会员服务
28+阅读 · 2020年8月8日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员