项目名称: 表面等离子体增强型MgZnO紫外探测材料和器件性能研究

项目编号: No.51272280

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 杜小龙

作者单位: 中国科学院物理研究所

项目金额: 80万元

中文摘要: 紫外探测器在飞行器探测和保密通信等领域具有广阔的应用前景,优越的光电性能和强的抗辐射特性使得MgZnO成为重要的紫外探测材料,为获得高光响应度、高信噪比器件,本项目利用表面等离子体(SP)的增强效应,研制探测波长在UV-A、B、C波段可调的SP增强型紫外探测器。首先在MgZnO单晶薄膜上原位可控制备Pt、Pd、Mg等纳米颗粒,研究MgZnO薄膜Mg组分以及金属种类对等离激元共振频率的影响,获得SP共振频率在紫外波段的可调范围;进一步制作SP增强MSM、MIS和PN型MgZnO紫外探测器结构,结合变温光荧光谱、超快光谱和深能级瞬态谱研究等离激元对入射光的共振吸收行为,以及与有源层的耦合过程,澄清缺陷和界面态对器件光响应度和光响应时间的影响,揭示器件的工作原理;最后通过优化器件结构和工艺参数,研制出高性能SP增强型紫外探测器原型器件。本项目的开展在深紫外弱光探测领域具有重要的科学意义和应用价值

中文关键词: 纳米金属等离子体;镁锌氧薄膜;紫外探测器;PS小球密排;蒸积

英文摘要: Nano particles of metals such as Pt, Pd, Mg, Al and Ag will be prepared to form surface plasmon (SP) on wurtzite and rock salt MgZnO single crystal epilayers which will be grown on sapphire and silicon substrates. The Mg contents of w-MgZnO will be changed from 0 to 0.55 so that their bandgaps can cover UV-A, B,C regions. The SP energy will be invesigated by using temperature dependent PL so as to find out the suitable nano metal/MgZnO systems for fabrication of SP enhanced MgZnO UV detectors. MSM, MIS and PN device structures will be used to fabricate SP enhanced MgZnO UV detectros. The combination study of temperature dependent PL, time resolved PL and deep level transient spectroscopy will be performed to clarify the process of SP resonant absorption and coupling between SP and the MgZnO active layer. Meanwhile, the influence of defects and interface states of SP/MgZnO on the device performnce will be investigated to reveal the effect of SP on the enhancement of photoresponsivity of the UV detectors. Finally, the SP enhanced MgZnO UV detectros with high performance will be fabricated by optimizing the device structure and device processing. This project is very valuable for weak UV light detection.

英文关键词: metal nano particl plasmon;MgZnO film;UV photodetector;closed-packed PS;evaporation deposition

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2021年4月6日
专知会员服务
22+阅读 · 2021年3月23日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
AMD Yes?三星 Exynos 处理器定档!
ZEALER订阅号
0+阅读 · 2021年12月31日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
小贴士
相关主题
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2021年4月6日
专知会员服务
22+阅读 · 2021年3月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员