项目名称: 响应性二维胶体晶体亚微米薄膜的制备及光学传感性质研究

项目编号: No.21303095

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 李澄

作者单位: 山东大学

项目金额: 26万元

中文摘要: 自组装胶体光子晶体在光学传感领域有重要应用前景,但传统三维胶体晶体传感结构在响应速率和检测限方面面临挑战,而二维胶体晶体以其亚微米的薄膜结构和特殊的光学性质在光学传感中有潜在应用优势。本项目拟开展响应性二维胶体晶体亚微米薄膜的制备及光学传感性质研究,通过化学合成、功能修饰、自组装等"自下而上"的手段在二维胶体晶体中引入响应性或功能性物质,如聚合物凝胶、微孔材料、功能基团或分子等,获得具有特定响应性的二维胶体晶体亚微米薄膜;通过光学测量和理论模拟相结合的方式研究所制备的二维胶体晶体亚微米薄膜的光学性质,明晰组成物质的本征特性及介观结构对薄膜光学性质的影响和作用规律;以几类代表性物质为检测对象,研究所制备的响应性二维胶体晶体亚微米薄膜的光学传感性能,认知制约其传感性能提高的因素,构建响应速率快、灵敏度高、检测限低,适用于原位、非侵入式检测的新型高性能光学传感模型,推动无标光学传感检测的发展。

中文关键词: 二维胶体晶体;响应性材料;光学传感;薄膜;光子晶体

英文摘要: Last decade has seen a growing interest in exploiting colloidal crystals, which are long-range ordered arrays of monodisperse colloidal particles, as signal transducers for the application in optical sensing and detections. So far, most colloidal crystal-sensing motifs have been fabricated from three-dimensional (3D) colloidal crystals, yet such 3D motifs have encountered challenges in achieving fast responses and low detection limits, which are very likely restricted by their relatively thick structures and large volumes. Two-dimensional (2D) colloidal crystals and their derived structures usually take the form of sub-micron thin films with interconnected macropores. Such sub-micron structures may not only enhance rapid diffusions of analytes (especially when they are in the form of solutes), but also enable detections of small volumes or quantities, and hence can greatly help improving the sensors' performance on the response time and the detection limit; moreover, 2D colloidal crystals have shown more diverse and sensitive optical properties comparing with their 3D counterparts, whereas their fabrication and processing are even less complicated. This research project is intended to fabricate responsive sub-micron thin films from 2D colloidal crystals and study their optical sensing properties. By using chemic

英文关键词: two-dimensional colloidal crystals;responsive materials;optical sensing;thin films;photonic crystals

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
31+阅读 · 2021年2月17日
无参考图像质量评价研究进展
专知会员服务
28+阅读 · 2021年2月14日
专知会员服务
89+阅读 · 2021年1月17日
【KDD2020】 图神经网络在生物医药领域的应用
专知会员服务
37+阅读 · 2020年11月2日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
126+阅读 · 2020年9月6日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
25+阅读 · 2018年1月24日
小贴士
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
31+阅读 · 2021年2月17日
无参考图像质量评价研究进展
专知会员服务
28+阅读 · 2021年2月14日
专知会员服务
89+阅读 · 2021年1月17日
【KDD2020】 图神经网络在生物医药领域的应用
专知会员服务
37+阅读 · 2020年11月2日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月17日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
126+阅读 · 2020年9月6日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
25+阅读 · 2018年1月24日
微信扫码咨询专知VIP会员