In this paper we introduce and study line Hermitian Grassmann codes as those subcodes of the Grassmann codes associated to the $2$-Grassmannian of a Hermitian polar space defined over a finite field of square order. In particular, we determine their parameters and characterize the words of minimum weight for $m\neq5$.
暂无翻译
We consider a general class of two-stage distributionally robust optimization (DRO) problems where the ambiguity set is constrained by fixed marginal probability laws that are not necessarily discrete. We derive primal and dual formulations of this class of problems and subsequently develop a numerical algorithm for computing approximate optimizers as well as approximate worst-case probability measures. Moreover, our algorithm computes both an upper bound and a lower bound for the optimal value of the problem, where the difference between the computed bounds provides a direct sub-optimality estimate of the computed solution. Most importantly, the sub-optimality can be controlled to be arbitrarily close to 0 by appropriately choosing the inputs of the algorithm. To demonstrate the effectiveness of the proposed algorithm, we apply it to three prominent instances of two-stage DRO problems in task scheduling, multi-product assembly, and supply chain network design with edge failure. The ambiguity sets in these problem instances involve a large number of continuous or discrete marginals. The numerical results showcase that the proposed algorithm computes high-quality robust decisions along with non-conservative sub-optimality estimates.
暂无翻译
A code $\mathcal{C}(n, k, d)$ defined over $\texttt{GF}(q^{n})$ is conventionally designed to encode a $k$-symbol user data into a codeword of length $n$, resulting in a fixed-rate coding. This paper proposes a coding procedure to derive a multiple-rate code from existing channel codes defined over a composite field $\texttt{GF}(q^{n})$. Formally, by viewing a symbol of $\texttt{GF}(q^{n})$ as an $n$-tuple over the base field $\texttt{GF}(q)$, the proposed coding scheme employs children codes $\mathcal{C}_{1}(n, 1), \mathcal{C}_{2}(n, 2), \ldots, \mathcal{C}_{n}(n, n)$ defined over $\texttt{GF}(q)$ to encode user messages of arbitrary lengths and incorporates a variable-rate feature. In sequel, unlike the conventional block codes of length $n$, the derived multiple-rate code of fixed blocklength $n$ (over $\texttt{GF}(q^{n})$) can be used to encode and decode user messages ${\bf m}$ (over $\texttt{GF}(q)$) of arbitrary lengths $|{\bf m}| = k, k+1, \ldots, kn$, thereby supporting a range of information rates - inclusive of the code rates $1/n, 2/n, \ldots, (k-1)/n$, in addition to the existing code rate $k/n$. The proposed multiple-rate coding scheme is also equipped with a decoding strategy, wherein the identification of children encoded user messages of variable length are carried out through a simple procedure using {\it orthogonal projectors}.
暂无翻译
We propose multi-agent reinforcement learning as a new method for modeling fake news in social networks. This method allows us to model human behavior in social networks both in unaccustomed populations and in populations that have adapted to the presence of fake news. In particular the latter is challenging for existing methods. We find that a fake-news attack is more effective if it targets highly connected people and people with weaker private information. Attacks are more effective when the disinformation is spread across several agents than when the disinformation is concentrated with more intensity on fewer agents. Furthermore, fake news spread less well in balanced networks than in clustered networks. We test a part of our findings in a human-subject experiment. The experimental evidence provides support for the predictions from the model, suggesting that the model is suitable to analyze the spread of fake news in social networks.
暂无翻译
JPEG AI is an emerging learning-based image coding standard developed by Joint Photographic Experts Group (JPEG). The scope of the JPEG AI is the creation of a practical learning-based image coding standard offering a single-stream, compact compressed domain representation, targeting both human visualization and machine consumption. Scheduled for completion in early 2025, the first version of JPEG AI focuses on human vision tasks, demonstrating significant BD-rate reductions compared to existing standards, in terms of MS-SSIM, FSIM, VIF, VMAF, PSNR-HVS, IW-SSIM and NLPD quality metrics. Designed to ensure broad interoperability, JPEG AI incorporates various design features to support deployment across diverse devices and applications. This paper provides an overview of the technical features and characteristics of the JPEG AI standard.
暂无翻译
Monitoring large language models' (LLMs) activations is an effective way to detect harmful requests before they lead to unsafe outputs. However, traditional safety monitors often require the same amount of compute for every query. This creates a trade-off: expensive monitors waste resources on easy inputs, while cheap ones risk missing subtle cases. We argue that safety monitors should be flexible--costs should rise only when inputs are difficult to assess, or when more compute is available. To achieve this, we introduce Truncated Polynomial Classifiers (TPCs), a natural extension of linear probes for dynamic activation monitoring. Our key insight is that polynomials can be trained and evaluated progressively, term-by-term. At test-time, one can early-stop for lightweight monitoring, or use more terms for stronger guardrails when needed. TPCs provide two modes of use. First, as a safety dial: by evaluating more terms, developers and regulators can "buy" stronger guardrails from the same model. Second, as an adaptive cascade: clear cases exit early after low-order checks, and higher-order guardrails are evaluated only for ambiguous inputs, reducing overall monitoring costs. On two large-scale safety datasets (WildGuardMix and BeaverTails), for 4 models with up to 30B parameters, we show that TPCs compete with or outperform MLP-based probe baselines of the same size, all the while being more interpretable than their black-box counterparts. Our code is available at http://github.com/james-oldfield/tpc.
暂无翻译
We propose an active jammer localization framework that combines Bayesian optimization with acquisition-aware path planning. Unlike passive crowdsourced methods, our approach adaptively guides a mobile agent to collect high-utility Received Signal Strength measurements while accounting for urban obstacles and mobility constraints. For this, we modified the A* algorithm, A-UCB*, by incorporating acquisition values into trajectory costs, leading to high-acquisition planned paths. Simulations on realistic urban scenarios show that the proposed method achieves accurate localization with fewer measurements compared to uninformed baselines, demonstrating consistent performance under different environments.
暂无翻译
Sharpness (of the loss minima) is a common measure to investigate the generalization of neural networks. Intuitively speaking, the flatter the landscape near the minima is, the better generalization might be. Unfortunately, the correlation between many existing sharpness measures and the generalization is usually not strong, sometimes even weak. To close the gap between the intuition and the reality, we propose a novel sharpness measure, i.e., \textit{R\'enyi sharpness}, which is defined as the negative R\'enyi entropy (a generalization of the classical Shannon entropy) of the loss Hessian. The main ideas are as follows: 1) we realize that \textit{uniform} (identical) eigenvalues of the loss Hessian is most desirable (while keeping the sum constant) to achieve good generalization; 2) we employ the \textit{R\'enyi entropy} to concisely characterize the extent of the spread of the eigenvalues of loss Hessian. Normally, the larger the spread, the smaller the (R\'enyi) entropy. To rigorously establish the relationship between generalization and (R\'enyi) sharpness, we provide several generalization bounds in terms of R\'enyi sharpness, by taking advantage of the reparametrization invariance property of R\'enyi sharpness, as well as the trick of translating the data discrepancy to the weight perturbation. Furthermore, extensive experiments are conducted to verify the strong correlation (in specific, Kendall rank correlation) between the R\'enyi sharpness and generalization. Moreover, we propose to use a variant of R\'enyi Sharpness as regularizer during training, i.e., R\'enyi Sharpness Aware Minimization (RSAM), which turns out to outperform all existing sharpness-aware minimization methods. It is worthy noting that the test accuracy gain of our proposed RSAM method could be as high as nearly 2.5\%, compared against the classical SAM method.
暂无翻译
Endometriosis is a common women's condition exhibiting a manifold visual appearance in various body-internal locations. Having such properties makes its identification very difficult and error-prone, at least for laymen and non-specialized medical practitioners. In an attempt to provide assistance to gynecologic physicians treating endometriosis, this demo paper describes a system that is trained to segment one frequently occurring visual appearance of endometriosis, namely dark endometrial implants. The system is capable of analyzing laparoscopic surgery videos, annotating identified implant regions with multi-colored overlays and displaying a detection summary for improved video browsing.
暂无翻译
Testing deep reinforcement learning (DRL) agents in safety-critical domains requires discovering diverse failure scenarios. Existing tools such as INDAGO rely on single-objective optimization focused solely on maximizing failure counts, but this does not ensure discovered scenarios are diverse or reveal distinct error types. We introduce INDAGO-Nexus, a multi-objective search approach that jointly optimizes for failure likelihood and test scenario diversity using multi-objective evolutionary algorithms with multiple diversity metrics and Pareto front selection strategies. We evaluated INDAGO-Nexus on three DRL agents: humanoid walker, self-driving car, and parking agent. On average, INDAGO-Nexus discovers up to 83% and 40% more unique failures (test effectiveness) than INDAGO in the SDC and Parking scenarios, respectively, while reducing time-to-failure by up to 67% across all agents.
暂无翻译