We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.


暂无翻译

0
下载
预览

Cloud computing and virtualization solutions allow one to rent the virtual machines (VMs) needed to run applications on a pay-per-use basis, but rented VMs do not offer any guarantee on their performance. Cloud platforms are known to be affected by performance variability, but a better understanding is still required. This paper moves in that direction and presents an in-depth, multi-faceted study on the performance variability of VMs. Unlike previous studies, our assessment covers a wide range of factors: 16 VM types from 4 well-known cloud providers, 10 benchmarks, and 28 different metrics. We present four new contributions. First, we introduce a new benchmark suite (VMBS) that let researchers and practitioners systematically collect a diverse set of performance data. Second, we present a new indicator, called Variability Indicator, that allows for measuring variability in the performance of VMs. Third, we illustrate an analysis of the collected data across four different dimensions: resources, isolation, time, and cost. Fourth, we present multiple predictive models based on Machine Learning that aim to forecast future performance and detect time patterns. Our experiments provide important insights on the resource variability of VMs, highlighting differences and similarities between various cloud providers. To the best of our knowledge, this is the widest analysis ever conducted on the topic.


暂无翻译

0
下载
预览

ASR systems have become increasingly widespread in recent years. However, their textual outputs often require post-processing tasks before they can be practically utilized. To address this issue, we draw inspiration from the multifaceted capabilities of LLMs and Whisper, and focus on integrating multiple ASR text processing tasks related to speech recognition into the ASR model. This integration not only shortens the multi-stage pipeline, but also prevents the propagation of cascading errors, resulting in direct generation of post-processed text. In this study, we focus on ASR-related processing tasks, including Contextual ASR and multiple ASR post processing tasks. To achieve this objective, we introduce the CPPF model, which offers a versatile and highly effective alternative to ASR processing. CPPF seamlessly integrates these tasks without any significant loss in recognition performance.


暂无翻译

0
下载
预览

Generating multi-instrument music from symbolic music representations is an important task in Music Information Retrieval (MIR). A central but still largely unsolved problem in this context is musically and acoustically informed control in the generation process. As the main contribution of this work, we propose enhancing control of multi-instrument synthesis by conditioning a generative model on a specific performance and recording environment, thus allowing for better guidance of timbre and style. Building on state-of-the-art diffusion-based music generative models, we introduce performance conditioning - a simple tool indicating the generative model to synthesize music with style and timbre of specific instruments taken from specific performances. Our prototype is evaluated using uncurated performances with diverse instrumentation and achieves state-of-the-art FAD realism scores while allowing novel timbre and style control. Our project page, including samples and demonstrations, is available at benadar293.github.io/midipm


暂无翻译

0
下载
预览

In this era of large language models (LLMs), the traditional training of models has become increasingly unimaginable for regular users and institutions. The exploration of efficient fine-tuning for high-resource languages on these models is an undeniable trend that is gradually gaining popularity. However, there has been very little exploration for various low-resource languages, such as Tibetan. Research in Tibetan NLP is inherently scarce and limited. While there is currently no existing large language model for Tibetan due to its low-resource nature, that day will undoubtedly arrive. Therefore, research on efficient fine-tuning for low-resource language models like Tibetan is highly necessary. Our research can serve as a reference to fill this crucial gap. Efficient fine-tuning strategies for pre-trained language models (PLMs) in Tibetan have seen minimal exploration. We conducted three types of efficient fine-tuning experiments on the publicly available TNCC-title dataset: "prompt-tuning," "Adapter lightweight fine-tuning," and "prompt-tuning + Adapter fine-tuning." The experimental results demonstrate significant improvements using these methods, providing valuable insights for advancing Tibetan language applications in the context of pre-trained models.


暂无翻译

0
下载
预览

Efficient routing algorithms based on vehicular ad hoc networks (VANETs) play an important role in emerging intelligent transportation systems. This highly dynamic topology faces a number of wireless communication service challenges. In this paper, we propose a protocol based on reinforcement learning and vehicle node clustering, the protocol is called Qucts, solve vehicle-to-fixed-destination or V2V messaging problems. Improve message delivery rates with minimal hops and latency, link stability is also taken into account. The agreement is divided into three levels, first cluster the vehicles, each cluster head broadcasts its own coordinates and speed, to get more cluster members. Also when a cluster member receives another cluster head broadcast message, the cluster head generates a list of surrounding clusters, find the best cluster to the destination as the next cluster during message passing. Second, the protocol constructs a Q-value table based on the state after clustering, used to participate in the selection of messaging clusters. Finally, we introduce parameters that express the stability of the vehicle within the cluster, for communication node selection. This protocol hierarchy makes Qucts an offline and online solution. In order to distinguish unstable nodes within a cluster, Coding of each road, will have vehicles with planned routes, For example, car hailing and public bus. Compare the overlap with other planned paths vehicles in the cluster, low overlap is labeled as unstable nodes. Vehicle path overlap rate without a planned path is set to the mean value. Comparing Qucts with existing routing protocols through simulation, Our proposed Qucts scheme provides large improvements in both data delivery rate and end-to-end delay reduction.


暂无翻译

0
下载
预览

In this paper, we study the effect of popularity degradation bias in the context of local music recommendations. Specifically, we examine how accurate two top-performing recommendation algorithms, Weight Relevance Matrix Factorization (WRMF) and Multinomial Variational Autoencoder (Mult-VAE), are at recommending artists as a function of artist popularity. We find that both algorithms improve recommendation performance for more popular artists and, as such, exhibit popularity degradation bias. While both algorithms produce a similar level of performance for more popular artists, Mult-VAE shows better relative performance for less popular artists. This suggests that this algorithm should be preferred for local (long-tail) music artist recommendation.


暂无翻译

0
下载
预览

Sequential change detection is a classical problem with a variety of applications. However, the majority of prior work has been parametric, for example, focusing on exponential families. We develop a fundamentally new and general framework for sequential change detection when the pre- and post-change distributions are nonparametrically specified (and thus composite). Our procedures come with clean, nonasymptotic bounds on the average run length (frequency of false alarms). In certain nonparametric cases (like sub-Gaussian or sub-exponential), we also provide near-optimal bounds on the detection delay following a changepoint. The primary technical tool that we introduce is called an \emph{e-detector}, which is composed of sums of e-processes -- a fundamental generalization of nonnegative supermartingales -- that are started at consecutive times. We first introduce simple Shiryaev-Roberts and CUSUM-style e-detectors, and then show how to design their mixtures in order to achieve both statistical and computational efficiency. Our e-detector framework can be instantiated to recover classical likelihood-based procedures for parametric problems, as well as yielding the first change detection method for many nonparametric problems. As a running example, we tackle the problem of detecting changes in the mean of a bounded random variable without i.i.d. assumptions, with an application to tracking the performance of a basketball team over multiple seasons.


暂无翻译

0
下载
预览

Long-Term Person Re-Identification (LT-ReID) has become increasingly crucial in computer vision and biometrics. In this work, we aim to extend LT-ReID beyond pedestrian recognition to include a wider range of real-world human activities while still accounting for cloth-changing scenarios over large time gaps. This setting poses additional challenges due to the geometric misalignment and appearance ambiguity caused by the diversity of human pose and clothing. To address these challenges, we propose a new approach 3DInvarReID for (i) disentangling identity from non-identity components (pose, clothing shape, and texture) of 3D clothed humans, and (ii) reconstructing accurate 3D clothed body shapes and learning discriminative features of naked body shapes for person ReID in a joint manner. To better evaluate our study of LT-ReID, we collect a real-world dataset called CCDA, which contains a wide variety of human activities and clothing changes. Experimentally, we show the superior performance of our approach for person ReID.


暂无翻译

1
下载
预览

Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baseline methods on a multi-label text classification task. This is applied to the use case of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification with PLMs is frequently reported to outperform classification with a classification head, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the industry taxonomy; (b) During fine-tuning, multiple labels must be provided in an arbitrary order; (c) The model provides a binary decision for each label, rather than an appropriate confidence score. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head. This improves performance significantly, while also reducing computational costs during inference. The results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities.


暂无翻译

0
下载
预览
登陆后查看更多精品内容
VIP会员
本周荟萃主题
区块链
区块链(Blockchain)是由节点参与的分布式数据库系统,它的特点是不可更改,不可伪造,也可以将其理解为账簿系统(ledger)。它是比特币的一个重要概念,完整比特币区块链的副本,记录了其代币(token)的每一笔交易。通过这些信息,我们可以找到每一个地址,在历史上任何一点所拥有的价值。
深度学习
机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。
机器学习
“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。”

——中文维基百科
强化学习
强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。
推荐系统
推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。
卷积神经网络
在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。基于它们的共享权重架构和平移不变性特征,它们也被称为位移不变或空间不变的人工神经网络(SIANN)。它们在图像和视频识别,推荐系统,图像分类,医学图像分析,自然语言处理,和财务时间序列中都有应用。
计算机网络
计算机网络( Computer Networks )指将地理位置不同的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。
命名实体识别
命名实体识别(NER)(也称为实体标识,实体组块和实体提取)是信息抽取的子任务,旨在将非结构化文本中提到的命名实体定位和分类为预定义类别,例如人员姓名、地名、机构名、专有名词等。
机器翻译
机器翻译,又称为自动翻译,是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。它是计算语言学的一个分支,是人工智能的终极目标之一,具有重要的科学研究价值。
计算机视觉
计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。
微信扫码咨询专知VIP会员