In this paper we introduce and study line Hermitian Grassmann codes as those subcodes of the Grassmann codes associated to the $2$-Grassmannian of a Hermitian polar space defined over a finite field of square order. In particular, we determine their parameters and characterize the words of minimum weight for $m\neq5$.


暂无翻译

0
下载
预览

We consider a general class of two-stage distributionally robust optimization (DRO) problems where the ambiguity set is constrained by fixed marginal probability laws that are not necessarily discrete. We derive primal and dual formulations of this class of problems and subsequently develop a numerical algorithm for computing approximate optimizers as well as approximate worst-case probability measures. Moreover, our algorithm computes both an upper bound and a lower bound for the optimal value of the problem, where the difference between the computed bounds provides a direct sub-optimality estimate of the computed solution. Most importantly, the sub-optimality can be controlled to be arbitrarily close to 0 by appropriately choosing the inputs of the algorithm. To demonstrate the effectiveness of the proposed algorithm, we apply it to three prominent instances of two-stage DRO problems in task scheduling, multi-product assembly, and supply chain network design with edge failure. The ambiguity sets in these problem instances involve a large number of continuous or discrete marginals. The numerical results showcase that the proposed algorithm computes high-quality robust decisions along with non-conservative sub-optimality estimates.


暂无翻译

0
下载
预览

A code $\mathcal{C}(n, k, d)$ defined over $\texttt{GF}(q^{n})$ is conventionally designed to encode a $k$-symbol user data into a codeword of length $n$, resulting in a fixed-rate coding. This paper proposes a coding procedure to derive a multiple-rate code from existing channel codes defined over a composite field $\texttt{GF}(q^{n})$. Formally, by viewing a symbol of $\texttt{GF}(q^{n})$ as an $n$-tuple over the base field $\texttt{GF}(q)$, the proposed coding scheme employs children codes $\mathcal{C}_{1}(n, 1), \mathcal{C}_{2}(n, 2), \ldots, \mathcal{C}_{n}(n, n)$ defined over $\texttt{GF}(q)$ to encode user messages of arbitrary lengths and incorporates a variable-rate feature. In sequel, unlike the conventional block codes of length $n$, the derived multiple-rate code of fixed blocklength $n$ (over $\texttt{GF}(q^{n})$) can be used to encode and decode user messages ${\bf m}$ (over $\texttt{GF}(q)$) of arbitrary lengths $|{\bf m}| = k, k+1, \ldots, kn$, thereby supporting a range of information rates - inclusive of the code rates $1/n, 2/n, \ldots, (k-1)/n$, in addition to the existing code rate $k/n$. The proposed multiple-rate coding scheme is also equipped with a decoding strategy, wherein the identification of children encoded user messages of variable length are carried out through a simple procedure using {\it orthogonal projectors}.


暂无翻译

0
下载
预览

We propose multi-agent reinforcement learning as a new method for modeling fake news in social networks. This method allows us to model human behavior in social networks both in unaccustomed populations and in populations that have adapted to the presence of fake news. In particular the latter is challenging for existing methods. We find that a fake-news attack is more effective if it targets highly connected people and people with weaker private information. Attacks are more effective when the disinformation is spread across several agents than when the disinformation is concentrated with more intensity on fewer agents. Furthermore, fake news spread less well in balanced networks than in clustered networks. We test a part of our findings in a human-subject experiment. The experimental evidence provides support for the predictions from the model, suggesting that the model is suitable to analyze the spread of fake news in social networks.


暂无翻译

0
下载
预览

JPEG AI is an emerging learning-based image coding standard developed by Joint Photographic Experts Group (JPEG). The scope of the JPEG AI is the creation of a practical learning-based image coding standard offering a single-stream, compact compressed domain representation, targeting both human visualization and machine consumption. Scheduled for completion in early 2025, the first version of JPEG AI focuses on human vision tasks, demonstrating significant BD-rate reductions compared to existing standards, in terms of MS-SSIM, FSIM, VIF, VMAF, PSNR-HVS, IW-SSIM and NLPD quality metrics. Designed to ensure broad interoperability, JPEG AI incorporates various design features to support deployment across diverse devices and applications. This paper provides an overview of the technical features and characteristics of the JPEG AI standard.


暂无翻译

0
下载
预览

Monitoring large language models' (LLMs) activations is an effective way to detect harmful requests before they lead to unsafe outputs. However, traditional safety monitors often require the same amount of compute for every query. This creates a trade-off: expensive monitors waste resources on easy inputs, while cheap ones risk missing subtle cases. We argue that safety monitors should be flexible--costs should rise only when inputs are difficult to assess, or when more compute is available. To achieve this, we introduce Truncated Polynomial Classifiers (TPCs), a natural extension of linear probes for dynamic activation monitoring. Our key insight is that polynomials can be trained and evaluated progressively, term-by-term. At test-time, one can early-stop for lightweight monitoring, or use more terms for stronger guardrails when needed. TPCs provide two modes of use. First, as a safety dial: by evaluating more terms, developers and regulators can "buy" stronger guardrails from the same model. Second, as an adaptive cascade: clear cases exit early after low-order checks, and higher-order guardrails are evaluated only for ambiguous inputs, reducing overall monitoring costs. On two large-scale safety datasets (WildGuardMix and BeaverTails), for 4 models with up to 30B parameters, we show that TPCs compete with or outperform MLP-based probe baselines of the same size, all the while being more interpretable than their black-box counterparts. Our code is available at http://github.com/james-oldfield/tpc.


暂无翻译

0
下载
预览

We propose an active jammer localization framework that combines Bayesian optimization with acquisition-aware path planning. Unlike passive crowdsourced methods, our approach adaptively guides a mobile agent to collect high-utility Received Signal Strength measurements while accounting for urban obstacles and mobility constraints. For this, we modified the A* algorithm, A-UCB*, by incorporating acquisition values into trajectory costs, leading to high-acquisition planned paths. Simulations on realistic urban scenarios show that the proposed method achieves accurate localization with fewer measurements compared to uninformed baselines, demonstrating consistent performance under different environments.


暂无翻译

0
下载
预览

Sharpness (of the loss minima) is a common measure to investigate the generalization of neural networks. Intuitively speaking, the flatter the landscape near the minima is, the better generalization might be. Unfortunately, the correlation between many existing sharpness measures and the generalization is usually not strong, sometimes even weak. To close the gap between the intuition and the reality, we propose a novel sharpness measure, i.e., \textit{R\'enyi sharpness}, which is defined as the negative R\'enyi entropy (a generalization of the classical Shannon entropy) of the loss Hessian. The main ideas are as follows: 1) we realize that \textit{uniform} (identical) eigenvalues of the loss Hessian is most desirable (while keeping the sum constant) to achieve good generalization; 2) we employ the \textit{R\'enyi entropy} to concisely characterize the extent of the spread of the eigenvalues of loss Hessian. Normally, the larger the spread, the smaller the (R\'enyi) entropy. To rigorously establish the relationship between generalization and (R\'enyi) sharpness, we provide several generalization bounds in terms of R\'enyi sharpness, by taking advantage of the reparametrization invariance property of R\'enyi sharpness, as well as the trick of translating the data discrepancy to the weight perturbation. Furthermore, extensive experiments are conducted to verify the strong correlation (in specific, Kendall rank correlation) between the R\'enyi sharpness and generalization. Moreover, we propose to use a variant of R\'enyi Sharpness as regularizer during training, i.e., R\'enyi Sharpness Aware Minimization (RSAM), which turns out to outperform all existing sharpness-aware minimization methods. It is worthy noting that the test accuracy gain of our proposed RSAM method could be as high as nearly 2.5\%, compared against the classical SAM method.


暂无翻译

0
下载
预览

Endometriosis is a common women's condition exhibiting a manifold visual appearance in various body-internal locations. Having such properties makes its identification very difficult and error-prone, at least for laymen and non-specialized medical practitioners. In an attempt to provide assistance to gynecologic physicians treating endometriosis, this demo paper describes a system that is trained to segment one frequently occurring visual appearance of endometriosis, namely dark endometrial implants. The system is capable of analyzing laparoscopic surgery videos, annotating identified implant regions with multi-colored overlays and displaying a detection summary for improved video browsing.


暂无翻译

0
下载
预览

Testing deep reinforcement learning (DRL) agents in safety-critical domains requires discovering diverse failure scenarios. Existing tools such as INDAGO rely on single-objective optimization focused solely on maximizing failure counts, but this does not ensure discovered scenarios are diverse or reveal distinct error types. We introduce INDAGO-Nexus, a multi-objective search approach that jointly optimizes for failure likelihood and test scenario diversity using multi-objective evolutionary algorithms with multiple diversity metrics and Pareto front selection strategies. We evaluated INDAGO-Nexus on three DRL agents: humanoid walker, self-driving car, and parking agent. On average, INDAGO-Nexus discovers up to 83% and 40% more unique failures (test effectiveness) than INDAGO in the SDC and Parking scenarios, respectively, while reducing time-to-failure by up to 67% across all agents.


暂无翻译

0
下载
预览
登陆后查看更多精品内容
VIP会员
本周荟萃主题
区块链
区块链(Blockchain)是由节点参与的分布式数据库系统,它的特点是不可更改,不可伪造,也可以将其理解为账簿系统(ledger)。它是比特币的一个重要概念,完整比特币区块链的副本,记录了其代币(token)的每一笔交易。通过这些信息,我们可以找到每一个地址,在历史上任何一点所拥有的价值。
深度学习
机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。
机器学习
“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。”

——中文维基百科
强化学习
强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。
推荐系统
推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。
卷积神经网络
在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。基于它们的共享权重架构和平移不变性特征,它们也被称为位移不变或空间不变的人工神经网络(SIANN)。它们在图像和视频识别,推荐系统,图像分类,医学图像分析,自然语言处理,和财务时间序列中都有应用。
计算机网络
计算机网络( Computer Networks )指将地理位置不同的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。
命名实体识别
命名实体识别(NER)(也称为实体标识,实体组块和实体提取)是信息抽取的子任务,旨在将非结构化文本中提到的命名实体定位和分类为预定义类别,例如人员姓名、地名、机构名、专有名词等。
机器翻译
机器翻译,又称为自动翻译,是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。它是计算语言学的一个分支,是人工智能的终极目标之一,具有重要的科学研究价值。
计算机视觉
计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。
微信扫码咨询专知VIP会员