We propose a unified optimization framework that combines neural networks with dictionary learning to model complex interactions between resting state functional MRI and behavioral data. The dictionary learning objective decomposes patient correlation matrices into a collection of shared basis networks and subject-specific loadings. These subject-specific features are simultaneously input into a neural network that predicts multidimensional clinical information. Our novel optimization framework combines the gradient information from the neural network with that of a conventional matrix factorization objective. This procedure collectively estimates the basis networks, subject loadings, and neural network weights most informative of clinical severity. We evaluate our combined model on a multi-score prediction task using 52 patients diagnosed with Autism Spectrum Disorder (ASD). Our integrated framework outperforms state-of-the-art methods in a ten-fold cross validated setting to predict three different measures of clinical severity.
暂无翻译
Existing click-through rate (CTR) prediction works have studied the role of feature interaction through a variety of techniques. Each interaction technique exhibits its own strength, and solely using one type could constrain the model's capability to capture the complex feature relationships, especially for industrial large-scale data with enormous users and items. Recent research shows that effective CTR models often combine an MLP network with a dedicated feature interaction network in a two-parallel structure. However, the interplay and cooperative dynamics between different streams or branches remain under-researched. In this work, we introduce a novel Multi-Branch Cooperation Network (MBCnet) which enables multiple branch networks to collaborate with each other for better complex feature interaction modeling. Specifically, MBCnet consists of three branches: the Expert-based Feature Grouping and Crossing (EFGC) branch that promotes the model's memorization ability of specific feature fields, the low rank Cross Net branch and Deep branch to enhance both explicit and implicit feature crossing for improved generalization. Among branches, a novel cooperation scheme is proposed based on two principles: branch co-teaching and moderate differentiation. Branch co-teaching encourages well-learned branches to support poorly-learned ones on specific training samples. Moderate differentiation advocates branches to maintain a reasonable level of difference in their feature representations. The cooperation strategy improves learning through mutual knowledge sharing via co-teaching and boosts the discovery of diverse feature interactions across branches. Extensive experiments on large-scale industrial datasets and online A/B test demonstrate MBCnet's superior performance, delivering a 0.09 point increase in CTR, 1.49% growth in deals, and 1.62% rise in GMV. Core codes will be released soon.
暂无翻译
This article presents an error analysis of the recently introduced Frenet immersed finite element (IFE) method. The Frenet IFE space employed in this method is constructed to be locally conforming to the function space of the associated weak form for the interface problem. This article further establishes a critical trace inequality for the Frenet IFE functions. These features enable us to prove that the Frenet IFE method converges optimally under mesh refinement in both $L^2$ and energy norms.
暂无翻译
Several recent works seek to develop foundation models specifically for medical applications, adapting general-purpose large language models (LLMs) and vision-language models (VLMs) via continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining (DAPT) improves performance on downstream medical tasks, such as answering medical licensing exam questions. In this paper, we compare seven public "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting regime for medical question-answering (QA) tasks. For instance, across the tasks and model pairs we consider in the 3-shot setting, medical LLMs only outperform their base models in 12.1% of cases, reach a (statistical) tie in 49.8% of cases, and are significantly worse than their base models in the remaining 38.2% of cases. Our conclusions are based on (i) comparing each medical model head-to-head, directly against the corresponding base model; (ii) optimizing the prompts for each model separately; and (iii) accounting for statistical uncertainty in comparisons. While these basic practices are not consistently adopted in the literature, our ablations show that they substantially impact conclusions. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.
暂无翻译
In this paper, we introduce Harpocrates, a compiler plugin and a framework pair for Scala that binds the privacy policies to the data during data creation in form of oblivious membranes. Harpocrates eliminates raw data for a policy protected type from the application, ensuring it can only exist in protected form and centralizes the policy checking to the policy declaration site, making the privacy logic easy to maintain and verify. Instead of approaching privacy from an information flow verification perspective, Harpocrates allow the data to flow freely throughout the application, inside the policy membranes but enforces the policies when the data is tried to be accessed, mutated, declassified or passed through the application boundary. The centralization of the policies allow the maintainers to change the enforced logic simply by updating a single function while keeping the rest of the application oblivious to the change. Especially in a setting where the data definition is shared by multiple applications, the publisher can update the policies without requiring the dependent applications to make any changes beyond updating the dependency version.
暂无翻译
Heatwaves, prolonged periods of extreme heat, have intensified in frequency and severity due to climate change, posing substantial risks to public health, ecosystems, and infrastructure. Despite advancements in Machine Learning (ML) modeling, accurate heatwave forecasting at weather scales (1--15 days) remains challenging due to the non-linear interactions between atmospheric drivers and the rarity of these extreme events. Traditional models relying on heuristic feature engineering often fail to generalize across diverse climates and capture the complexities of heatwave dynamics. This study introduces the Distribution-Informed Graph Neural Network (DI-GNN), a novel framework that integrates principles from Extreme Value Theory (EVT) into the graph neural network architecture. DI-GNN incorporates Generalized Pareto Distribution (GPD)-derived descriptors into the feature space, adjacency matrix, and loss function to enhance its sensitivity to rare heatwave occurrences. By prioritizing the tails of climatic distributions, DI-GNN addresses the limitations of existing methods, particularly in imbalanced datasets where traditional metrics like accuracy are misleading. Empirical evaluations using weather station data from British Columbia, Canada, demonstrate the superior performance of DI-GNN compared to baseline models. DI-GNN achieved significant improvements in balanced accuracy, recall, and precision, with high AUC and average precision scores, reflecting its robustness in distinguishing heatwave events.
暂无翻译
In this paper, a new classification model based on covariance matrices is built in order to classify buried objects. The inputs of the proposed models are the hyperbola thumbnails obtained with a classical Ground Penetrating Radar (GPR) system. These thumbnails are then inputs to the first layers of a classical CNN, which then produces a covariance matrix using the outputs of the convolutional filters. Next, the covariance matrix is given to a network composed of specific layers to classify Symmetric Positive Definite (SPD) matrices. We show in a large database that our approach outperform shallow networks designed for GPR data and conventional CNNs typically used in computer vision applications, particularly when the number of training data decreases and in the presence of mislabeled data. We also illustrate the interest of our models when training data and test sets are obtained from different weather modes or considerations.
暂无翻译
The proliferation of AI-generated images has intensified the need for robust content authentication methods. We present InvisMark, a novel watermarking technique designed for high-resolution AI-generated images. Our approach leverages advanced neural network architectures and training strategies to embed imperceptible yet highly robust watermarks. InvisMark achieves state-of-the-art performance in imperceptibility (PSNR$\sim$51, SSIM $\sim$ 0.998) while maintaining over 97\% bit accuracy across various image manipulations. Notably, we demonstrate the successful encoding of 256-bit watermarks, significantly expanding payload capacity while preserving image quality. This enables the embedding of UUIDs with error correction codes, achieving near-perfect decoding success rates even under challenging image distortions. We also address potential vulnerabilities against advanced attacks and propose mitigation strategies. By combining high imperceptibility, extended payload capacity, and resilience to manipulations, InvisMark provides a robust foundation for ensuring media provenance in an era of increasingly sophisticated AI-generated content. Source code of this paper is available at: https://github.com/microsoft/InvisMark.
暂无翻译
The increasing demand for multilingual capabilities in healthcare underscores the need for AI models adept at processing diverse languages, particularly in clinical documentation and decision-making. Arabic, with its complex morphology, syntax, and diglossia, poses unique challenges for natural language processing (NLP) in medical contexts. This case study evaluates Sporo AraSum, a language model tailored for Arabic clinical documentation, against JAIS, the leading Arabic NLP model. Using synthetic datasets and modified PDQI-9 metrics modified ourselves for the purposes of assessing model performances in a different language. The study assessed the models' performance in summarizing patient-physician interactions, focusing on accuracy, comprehensiveness, clinical utility, and linguistic-cultural competence. Results indicate that Sporo AraSum significantly outperforms JAIS in AI-centric quantitative metrics and all qualitative attributes measured in our modified version of the PDQI-9. AraSum's architecture enables precise and culturally sensitive documentation, addressing the linguistic nuances of Arabic while mitigating risks of AI hallucinations. These findings suggest that Sporo AraSum is better suited to meet the demands of Arabic-speaking healthcare environments, offering a transformative solution for multilingual clinical workflows. Future research should incorporate real-world data to further validate these findings and explore broader integration into healthcare systems.
暂无翻译
Researchers often turn to block randomization to increase the precision of their inference or due to practical considerations, such as in multi-site trials. However, if the number of treatments under consideration is large it might not be practical or even feasible to assign all treatments within each block. We develop novel inference results under the finite-population design-based framework for natural alternatives to the complete block design that do not require reducing the number of treatment arms, the incomplete block design (IBD) and the balanced incomplete block design (BIBD). This includes deriving the properties of two estimators and proposing conservative variance estimators. To assist practitioners in understanding the trade-offs of using these designs, precision comparisons are made to standard estimators for the complete block, cluster-randomized, and completely randomized designs. Simulations and a data illustration further demonstrate the trade-offs. This work highlights IBDs as practical and currently underutilized designs.
暂无翻译