The rapid development of Large Language Models (LLMs) for code generation has transformed software development by automating coding tasks with unprecedented efficiency. However, the training of these models on open-source code repositories (e.g., from GitHub) raises critical ethical and legal concerns, particularly regarding data authorization and open-source license compliance. Developers are increasingly questioning whether model trainers have obtained proper authorization before using repositories for training, especially given the lack of transparency in data collection. To address these concerns, we propose a novel data marking framework RepoMark to audit the data usage of code LLMs. Our method enables auditors to verify whether their code has been used in training, while ensuring semantic preservation, imperceptibility, and theoretical false detection rate (FDR) guarantees. By generating multiple semantically equivalent code variants, RepoMark introduces data marks into the code files, and during detection, RepoMark leverages a novel ranking-based hypothesis test to detect model behavior difference on trained data. Compared to prior data auditing approaches, RepoMark significantly enhances data efficiency, allowing effective auditing even when the user's repository possesses only a small number of code files. Experiments demonstrate that RepoMark achieves a detection success rate over 90\% on small code repositories under a strict FDR guarantee of 5\%. This represents a significant advancement over existing data marking techniques, all of which only achieve accuracy below 55\% under identical settings. This further validates RepoMark as a robust, theoretically sound, and promising solution for enhancing transparency in code LLM training, which can safeguard the rights of code authors.
暂无翻译
Large Language Model (LLM) agents have recently shown strong potential in domains such as automated coding, deep research, and graphical user interface manipulation. However, training them to succeed on long-horizon, domain-specialized tasks remains challenging. Current methods primarily fall into two categories. The first relies on dense human annotations through behavior cloning, which is prohibitively expensive for long-horizon tasks that can take days or months. The second depends on outcome-driven sampling, which often collapses due to the rarity of valid positive trajectories on domain-specialized tasks. We introduce Apollo, a sampling framework that integrates asynchronous human guidance with action-level data filtering. Instead of requiring annotators to shadow every step, Apollo allows them to intervene only when the agent drifts from a promising trajectory, by providing prior knowledge, strategic advice, etc. This lightweight design makes it possible to sustain interactions for over 30 hours and produces valuable trajectories at a lower cost. Apollo then applies supervision control to filter out sub-optimal actions and prevent error propagation. Together, these components enable reliable and effective data collection in long-horizon environments. To demonstrate the effectiveness of Apollo, we evaluate it using InnovatorBench. Our experiments show that when applied to train the GLM-4.5 model on InnovatorBench, Apollo achieves more than a 50% improvement over the untrained baseline and a 28% improvement over a variant trained without human interaction. These results highlight the critical role of human-in-the-loop sampling and the robustness of Apollo's design in handling long-horizon, domain-specialized tasks.
暂无翻译
Open-weight bio-foundation models present a dual-use dilemma. While holding great promise for accelerating scientific research and drug development, they could also enable bad actors to develop more deadly bioweapons. To mitigate the risk posed by these models, current approaches focus on filtering biohazardous data during pre-training. However, the effectiveness of such an approach remains unclear, particularly against determined actors who might fine-tune these models for malicious use. To address this gap, we propose \eval, a framework to evaluate the robustness of procedures that are intended to reduce the dual-use capabilities of bio-foundation models. \eval assesses models' virus understanding through three lenses, including sequence modeling, mutational effects prediction, and virulence prediction. Our results show that current filtering practices may not be particularly effective: Excluded knowledge can be rapidly recovered in some cases via fine-tuning, and exhibits broader generalizability in sequence modeling. Furthermore, dual-use signals may already reside in the pretrained representations, and can be elicited via simple linear probing. These findings highlight the challenges of data filtering as a standalone procedure, underscoring the need for further research into robust safety and security strategies for open-weight bio-foundation models.
暂无翻译
We derive closed-form extensions of Riccati's recursions (both sequential and parallel) for solving dual-regularized LQR problems. We show how these methods can be used to solve general constrained, non-convex, discrete-time optimal control problems via a regularized interior point method, while guaranteeing that each primal step is a descent direction of an Augmented Barrier-Lagrangian merit function. We provide MIT-licensed implementations of our methods in C++ and JAX.
暂无翻译
Efficient large-scale retrieval requires representations that are both compact and discriminative. Foundation models provide powerful visual and multimodal embeddings, but nearest neighbor search in these high-dimensional spaces is computationally expensive. Hashing offers an efficient alternative by enabling fast Hamming distance search with binary codes, yet existing approaches often rely on complex pipelines, multi-term objectives, designs specialized for a single learning paradigm, and long training times. We introduce CroVCA (Cross-View Code Alignment), a simple and unified principle for learning binary codes that remain consistent across semantically aligned views. A single binary cross-entropy loss enforces alignment, while coding-rate maximization serves as an anti-collapse regularizer to promote balanced and diverse codes. To implement this, we design HashCoder, a lightweight MLP hashing network with a final batch normalization layer to enforce balanced codes. HashCoder can be used as a probing head on frozen embeddings or to adapt encoders efficiently via LoRA fine-tuning. Across benchmarks, CroVCA achieves state-of-the-art results in just 5 training epochs. At 16 bits, it particularly well-for instance, unsupervised hashing on COCO completes in under 2 minutes and supervised hashing on ImageNet100 in about 3 minutes on a single GPU. These results highlight CroVCA's efficiency, adaptability, and broad applicability.
暂无翻译
While traditionally not considered part of the scientific method, science communication is increasingly playing a pivotal role in shaping scientific practice. Researchers are now frequently compelled to publicise their findings in response to institutional impact metrics and competitive grant environments. This shift underscores the growing influence of media narratives on both scientific priorities and public perception. In a current trend of personality-driven reporting, we examine patterns in science communication that may indicate biases of different types, towards topics and researchers. We focused and applied our methodology to a corpus of media coverage from three of the most prominent scientific media outlets: Wired, Quanta, and The New Scientist -- spanning the past 5 to 10 years. By mapping linguistic patterns, citation flows, and topical convergence, our objective was to quantify the dimensions and degree of bias that influence the credibility of scientific journalism. In doing so, we seek to illuminate the systemic features that shape science communication today and to interrogate their broader implications for epistemic integrity and public accountability in science. We present our results with anonymised journalist names but conclude that personality-driven media coverage distorts science and the practice of science flattening rather than expanding scientific coverage perception. Keywords : selective sourcing, bias, scientific journalism, Quanta, Wired, New Scientist, fairness, balance, neutrality, standard practices, distortion, personal promotion, communication, media outlets.
暂无翻译
It is well known that phase formation by electrodeposition yields films of poorly controllable morphology. This typically leads to a range of technological issues in many fields of electrochemical technology. Presently, a particularly relevant case is that of high-energy density next-generation batteries with metal anodes, that cannot yet reach practical cyclability targets, owing to uncontrolled elelctrode shape evolution. In this scenario, mathematical modelling is a key tool to lay the knowledge-base for materials-science advancements liable to lead to concretely stable battery material architectures. In this work, we introduce the Evolving Surface DIB (ESDIB) model, a reaction-diffusion system posed on a dynamically evolving electrode surface. Unlike previous fixed-surface formulations, the ESDIB model couples surface evolution to the local concentration of electrochemical species, allowing the geometry of the electrode itself to adapt in response to deposition. To handle the challenges related to the coupling between surface motion and species transport, we numerically solve the system by proposing an extension of the Lumped Evolving Surface Finite Element Method (LESFEM) for spatial discretisation, combined with an IMEX Euler scheme for time integration. The model is validated through six numerical experiments, each compared with laboratory images of electrodeposition. Results demonstrate that the ESDIB framework accurately captures branching and dendritic growth, providing a predictive and physically consistent tool for studying metal deposition phenomena in energy storage devices.
暂无翻译
We propose a mathematically principled PDE gradient flow framework for distributionally robust optimization (DRO). Exploiting the recent advances in the intersection of Markov Chain Monte Carlo sampling and gradient flow theory, we show that our theoretical framework can be implemented as practical algorithms for sampling from worst-case distributions and, consequently, DRO. While numerous previous works have proposed various reformulation techniques and iterative algorithms, we contribute a sound gradient flow view of the distributional optimization that can be used to construct new algorithms. As an example of applications, we solve a class of Wasserstein and Sinkhorn DRO problems using the recently-discovered Wasserstein Fisher-Rao and Stein variational gradient flows. Notably, we also show some simple reductions of our framework recover exactly previously proposed popular DRO methods, and provide new insights into their theoretical limit and optimization dynamics. Numerical studies based on stochastic gradient descent provide empirical backing for our theoretical findings.
暂无翻译
Shallow free surface flows are often characterized by both subdomains that require high modeling complexity and subdomains that can be sufficiently accurately modeled with low modeling complexity. Moreover, these subdomains may change in time as the water flows through the domain. This motivates the need for space and time adaptivity in the simulation of shallow free surface flows. In this paper, we develop the first adaptive simulations using the recently developed Shallow Water Moment Equations, which are an extension of the standard Shallow Water Equations that allow for vertically changing velocity profiles by including additional variables and equations. The model-specific modeling complexity of a shallow water moment model is determined by its order. The higher the order of the model, the more variables and equations are included in the model. Shallow water moment models are ideally suited for adaptivity because they are hierarchical such that low-order models and high-order models share the same structure. To enable adaptive simulations, we propose two approaches for the coupling of the varying-order shallow water moment equations at their boundary interfaces. The first approach dynamically updates padded state variables but cannot be written in conservative form, while the second approach uses fixed padded state variable values of zero and reduces to conservative form for conservative moment equations. The switching procedure between high-order models and low-order models is based on a new set of model error estimators, originating from a decomposition of the high-order models. Numerical results of the collision of a dam-break wave with a smooth wave yield accurate results, while achieving speedups up to 60 percent compared to a non-adaptive model with fixed modeling complexity.
暂无翻译
Local principal component analysis (Local PCA) has proven to be an effective tool for estimating the intrinsic dimension of a manifold. More recently, curvature-adjusted PCA (CA-PCA) has improved upon this approach by explicitly accounting for the curvature of the underlying manifold, rather than assuming local flatness. Building on these insights, we propose a general framework for manifold dimension estimation that captures the manifold's local graph structure by integrating PCA with regression-based techniques. Within this framework, we introduce two representative estimators: quadratic embedding (QE) and total least squares (TLS). Experiments on both synthetic and real-world datasets demonstrate that these methods perform competitively with, and often outperform, state-of-the-art alternatives.
暂无翻译