Traditional wireless network design relies on optimization algorithms derived from domain-specific mathematical models, which are often inefficient and unsuitable for dynamic, real-time applications due to high complexity. Deep learning has emerged as a promising alternative to overcome complexity and adaptability concerns, but it faces challenges such as accuracy issues, delays, and limited interpretability due to its inherent black-box nature. This paper introduces a novel approach that integrates optimization theory with deep learning methodologies to address these issues. The methodology starts by constructing the block diagram of the optimization theory-based solution, identifying key building blocks corresponding to optimality conditions and iterative solutions. Selected building blocks are then replaced with deep neural networks, enhancing the adaptability and interpretability of the system. Extensive simulations show that this hybrid approach not only reduces runtime compared to optimization theory based approaches but also significantly improves accuracy and convergence rates, outperforming pure deep learning models.
暂无翻译
Recent developments in Generative Artificial Intelligence (GenAI) have created significant uncertainty in education, particularly in terms of assessment practices. Against this backdrop, we present an updated version of the AI Assessment Scale (AIAS), a framework with two fundamental purposes: to facilitate open dialogue between educators and students about appropriate GenAI use and to support educators in redesigning assessments in an era of expanding AI capabilities. Grounded in social constructivist principles and designed with assessment validity in mind, the AIAS provides a structured yet flexible approach that can be adapted across different educational contexts. Building on implementation feedback from global adoption across both the K-12 and higher education contexts, this revision represents a significant change from the original AIAS. Among these changes is a new visual guide that moves beyond the original traffic light system and utilises a neutral colour palette that avoids implied hierarchies between the levels. The scale maintains five distinct levels of GenAI integration in assessment, from "No AI" to "AI Exploration", but has been refined to better reflect rapidly advancing technological capabilities and emerging pedagogical needs. This paper presents the theoretical foundations of the revised framework, provides detailed implementation guidance through practical vignettes, and discusses its limitations and future directions. As GenAI capabilities continue to expand, particularly in multimodal content generation, the AIAS offers a starting point for reimagining assessment design in an era of disruptive technologies.
暂无翻译
Interpretability methods seek to understand language model representations, yet the outputs of most such methods -- circuits, vectors, scalars -- are not immediately human-interpretable. In response, we introduce LatentQA, the task of answering open-ended questions about model activations in natural language. Towards solving LatentQA, we propose Latent Interpretation Tuning (LIT), which finetunes a decoder LLM on a dataset of activations and associated question-answer pairs, similar to how visual instruction tuning trains on question-answer pairs associated with images. We use the decoder for diverse reading applications, such as extracting relational knowledge from representations or uncovering system prompts governing model behavior. Our decoder also specifies a differentiable loss that we use to control models, such as debiasing models on stereotyped sentences and controlling the sentiment of generations. Finally, we extend LatentQA to reveal harmful model capabilities, such as generating recipes for bioweapons and code for hacking.
暂无翻译
Entanglement is unanimously recognized as the key communication resource of the Quantum Internet. Yet, the possibility of implementing novel network functionalities by exploiting the marvels of entanglement has been poorly investigated so far, by mainly restricting the attention to bipartite entanglement. Conversely, in this paper, we aim at exploiting multipartite entanglement as inter-network resource. Specifically, we consider the interconnection of different Quantum Local Area Networks (QLANs), and we show that multipartite entanglement allows to dynamically generate an inter-QLAN artificial topology, by means of local operations only, that overcomes the limitations of the physical QLAN topologies. To this aim, we first design the multipartite entangled state to be distributed within each QLAN. Then, we show how such a state can be engineered to: i) interconnect nodes belonging to different QLANs, and ii) dynamically adapt to different inter-QLAN traffic patterns. Our contribution aims at providing the network engineering community with a hands-on guideline towards the concept of artificial topology and artificial neighborhood.
暂无翻译
The advent of Large Language Models (LLMs) and Artificial Intelligence (AI) tools has revolutionized various facets of our lives, particularly in the realm of social media. For students, these advancements have unlocked unprecedented opportunities for learning, collaboration, and personal growth. AI-driven applications are transforming how students interact with social media, offering personalized content and recommendations, and enabling smarter, more efficient communication. Recent studies utilizing data from UniversityCube underscore the profound impact of AI tools on students' academic and social experiences. These studies reveal that students engaging with AI-enhanced social media platforms report higher academic performance, enhanced critical thinking skills, and increased engagement in collaborative projects. Moreover, AI tools assist in filtering out distracting content, allowing students to concentrate more on educational materials and pertinent discussions. The integration of LLMs in social media has further facilitated improved peer-to-peer communication and mentorship opportunities. AI algorithms effectively match students based on shared academic interests and career goals, fostering a supportive and intellectually stimulating online community, thereby contributing to increased student satisfaction and retention rates. In this article, we delve into the data provided by UniversityCube to explore how LLMs and AI tools are specifically transforming social media for students. Through case studies and statistical analyses, we offer a comprehensive understanding of the educational and social benefits these technologies offer. Our exploration highlights the potential of AI-driven tools to create a more enriched, efficient, and supportive educational environment for students in the digital age.
暂无翻译
We study analysis of complex systems using a Quantitative Theory of Meaning developed as an extention of Shannon's Communication Theory. The approach consideres complexity not in terms of the manifestation of its effects which are manifestation of the dynamics of the system, but in terms of primary causes and taking into account the topology of the system. Here, the dynamics of the system are provided by reflexive communication between heterogenious agents that make up the system. Unlike Shannon's Communication Theory the Theory of Meaning imposes restrictions on the complex systems being analyzed. Non-linearity and specific dynamics of the system arise as a consequence of the topology of the system. This topology also suggests a method for analyzing complex systems, the logistic Continuous Wavelet Transform (CWT). The paper also lays the foundation for future research in various fields studying complex systems of interacting geterogeneous agents, which may form a new paradigm for better understanding the structure, mechanisms, and dynamics of complex systems.
暂无翻译
Cross-border data transfer is vital for the digital economy by enabling data flow across different countries or regions. However, ensuring compliance with diverse data protection regulations during the transfer introduces significant complexities. Existing solutions either focus on a single legal framework or neglect real-time and concurrent processing demands, resulting in incomplete and inconsistent compliance management. To address this issue, we propose Cross-Border Compliance Management System (CBCMS), which not only enables the unified management of data processing policies across multiple jurisdictions to ensure compliance with various legal frameworks involved in cross-border data transfer, but also supports real-time and high-concurrency processing capabilities. We design Policy Definition Language (PDL) that supports the unified management of data processing policies, bridging the gap between natural language policies and machine-processable expressions, thereby allowing various legal frameworks to be seamlessly integrated into CBCMS. We present Compliance Policy Generation Model (CPGM), the core component of CBCMS, which generates compliant data processing policies with high accuracy, achieving up to 25.16% improvement in F1 score (reaching 97.32%) compared to rule-based baseline. CPGM achieves inference time in the order of milliseconds (6 to 13 ms), and keeps low latency even under high-load scenarios, demonstrating high real-time and concurrent performance. To our knowledge, CBCMS is the first system to support unified compliance management across jurisdictions while ensuring real-time and concurrent processing capabilities.
暂无翻译
Latency is becoming a key factor of performance for Internet applications and has triggered a number of changes in its protocols. Our work revisits the impact on latency of address family selection in dual-stack hosts. Through RIPE Atlas measurements, we analyse the address families latency difference and establish two requirements based on our findings for a latency-focused selection mechanism. First, the address family should be chosen per destination. Second, the choice should be able to evolve over time dynamically. We propose and implement a solution formulated as an online learning problem balancing exploration and exploitation. We validate our solution in simulations based on RIPE Atlas measurements, implement and evaluate our prototype in four access networks using Chrome and popular web services. We demonstrate the ability of our solution to converge towards the lowest-latency address family and improve the latency of transport connections used by applications.
暂无翻译
We empirically demonstrate that a transformer pre-trained on country-scale unlabeled human mobility data learns embeddings capable, through fine-tuning, of developing a deep understanding of the target geography and its corresponding mobility patterns. Utilizing an adaptation framework, we evaluate the performance of our pre-trained embeddings in encapsulating a broad spectrum of concepts directly and indirectly related to human mobility. This includes basic notions, such as geographic location and distance, and extends to more complex constructs, such as administrative divisions and land cover. Our extensive empirical analysis reveals a substantial performance boost gained from pre-training, reaching up to 38% in tasks such as tree-cover regression. We attribute this result to the ability of the pre-training to uncover meaningful patterns hidden in the raw data, beneficial for modeling relevant high-level concepts. The pre-trained embeddings emerge as robust representations of regions and trajectories, potentially valuable for a wide range of downstream applications.
暂无翻译
The potential of Wi-Fi backscatter communications systems is immense, yet challenges such as signal instability and energy constraints impose performance limits. This paper introduces FlexScatter, a Wi-Fi backscatter system using a designed scheduling strategy based on excitation prediction and rateless coding to enhance system performance. Initially, a Wi-Fi traffic prediction model is constructed by analyzing the variability of the excitation source. Then, an adaptive transmission scheduling algorithm is proposed to address the low energy consumption demands of backscatter tags, adjusting the transmission strategy according to predictive analytics and taming channel conditions. Furthermore, leveraging the benefits of low-density parity-check (LDPC) and fountain codes, a novel coding and decoding algorithm is developed, which is tailored for dynamic channel conditions. Experimental validation shows that FlexScatter reduces bit error rates (BER) by up to 30%, improves energy efficiency by 7%, and increases overall system utility by 11%, compared to conventional methods. FlexScatter's ability to balance energy consumption and communication efficiency makes it a robust solution for future IoT applications that rely on unpredictable Wi-Fi traffic.
暂无翻译