希伯来大学最新《自然语言处理(NLP)领域的高效方法》综述论文,阐述资源受限如何提高模型效率

2022 年 9 月 18 日 专知

选自arXiv

机器之心编译
编辑 :赵阳
如果硬件跟不上需求,我们可以尽可能提高算法效率。

训练越来越大的深度学习模型已经成为过去十年的一个新兴趋势。如下图所示,模型参数量的不断增加让神经网络的性能越来越好,也产生了一些新的研究方向,但模型的问题也越来越多。



首先,这类模型往往有访问限制,没有开源,或者即使开源,仍然需要大量的计算资源来运行。第二,这些网络模型的参数是不能通用的,因此需要大量的资源来进行训练和推导。第三,模型不能无限扩大,因为参数的规模受到硬件的限制。为了解决这些问题,专注于提高效率的方法正在形成一种新的研究趋势。

近日,来自希伯来大学、华盛顿大学等多所机构的十几位研究者联合撰写了一篇综述,归纳总结了自然语言处理(NLP)领域的高效方法。



论文地址:https://arxiv.org/pdf/2209.00099.pdf

效率通常是指输入系统的资源与系统产出之间的关系,一个高效的系统能在不浪费资源的情况下产生产出。在 NLP 领域,我们认为效率是一个模型的成本与它产生的结果之间的关系。



方程(1)描述了一个人工智能模型产生某种结果(R)的训练成本(Cost)与三个(不完备的)因素成正比:


(1)在单个样本上执行模型的成本(E);

(2)训练数据集的大小(D);

(3)模型选择或参数调整所需的训练运行次数(H)。


然后,可以从多个维度衡量成本 Cost(·) ,如计算、时间或环境成本中的每一个都可以通过多种方式进一步量化。例如,计算成本可以包括浮点运算(FLOPs)的总数或模型参数的数量。由于使用单一的成本指标可能会产生误导,该研究收集和整理了关于高效 NLP 的多个方面的工作,并讨论了哪些方面对哪些用例有益。


该研究旨在对提高 NLP 效率的广泛方法做一个基本介绍,因此该研究按照典型的 NLP 模型 pipeline(下图 2)来组织这次调查,介绍了使各个阶段更高效的现有方法。



这项工作给 NLP 研究人员提供了一个实用的效率指南,主要面向两类读者:


(1)来自 NLP 各个领域的研究人员,帮助他们在资源有限的环境下工作:根据资源的瓶颈,读者可以直接跳到 NLP pipeline 所涵盖的某个方面。例如,如果主要的限制是推理时间,论文中第 6 章描述了相关的提高效率方法。

(2)对改善 NLP 方法效率现状感兴趣的研究人员。该论文可以作为一个切入点,为新的研究方向寻找机会。


下图 3 概述了该研究归纳整理的高效 NLP 方法。



此外,虽然硬件的选择对模型的效率有很大的影响,但大多数 NLP 研究者并不能直接控制关于硬件的决定,而且大多数硬件优化对于 NLP pipeline 中的所有阶段都有用。因此,该研究将工作重点放在了算法上,但在第 7 章中提供了关于硬件优化的简单介绍。最后,该论文进一步讨论了如何量化效率,在评估过程中应该考虑哪些因素,以及如何决定最适合的模型。


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“NLPEM” 就可以获取希伯来大学最新《自然语言处理(NLP)领域的高效方法》综述论文,阐述资源受限如何提高模型效率》专知下载链接

                       
专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取100000+AI(AI与军事、医药、公安等)主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取100000+AI主题知识资料
登录查看更多
1

相关内容

专知会员服务
78+阅读 · 2021年5月30日
最新《低资源自然语言处理》综述论文,21页pdf
专知会员服务
60+阅读 · 2020年10月27日
最新《文本深度学习模型压缩》综述论文,21页pdf
专知会员服务
26+阅读 · 2020年8月19日
专知会员服务
201+阅读 · 2020年3月6日
最新《分布式机器学习》论文综述最新DML进展,33页pdf
专知会员服务
120+阅读 · 2019年12月26日
自然语言处理常识推理综述论文,60页pdf
专知
73+阅读 · 2019年4月4日
自然语言处理NLP快速入门
专知
20+阅读 · 2018年10月8日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
PAL: Program-aided Language Models
Arxiv
0+阅读 · 2022年11月18日
Arxiv
28+阅读 · 2021年5月17日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
18+阅读 · 2019年1月16日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
PAL: Program-aided Language Models
Arxiv
0+阅读 · 2022年11月18日
Arxiv
28+阅读 · 2021年5月17日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
18+阅读 · 2019年1月16日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Top
微信扫码咨询专知VIP会员