7本书带你掌握数据科学中的数学基础(附下载)

2018 年 4 月 19 日 数据派THU Ajit Jaokar

作者:Ajit Jaokar

翻译:李海明

本文约1500,建议阅读6分钟

想要精通数据科学,学好数学功不可没。


微信后台回复“7本书”获取文章内的书籍资源


关键词:书,数据科学,Ian Goodfellow,机器学习,数学, Robert TibshiraniVladimir Vapnik


想要精通数据科学,学好数学功不可没。基于这一常识,现推荐7本好书。


很多人在学习数据科学的时候都非常重视编程的学习。然而,如若有意精通数据科学(亦或是机器学习)这一门类,我们绝不能忽视数据科学的数学背景。所以,接下来我会推荐我在学习数据科学的过程中非常享受的7本数学基础方面的书。说“享受“可能不是特别准确,因为要非常非常努力才行!


那么问题来了,为什么你需要去学好数据科学中的数学基础呢?


以下几条原因一直激励着我这样去做:


人工智能技术一直处于高速更迭中。良好的数学基础有助于你理解人工智能技术的进化,同时也能让你更深入地去理解并使用人工智能技术,而不是停留在AI技术的表面。另外,这样做也可以帮助你更好地去看待AI知识产权的问题。最后,职业规划方面,一旦你掌握了数据科学背后的数学基础,便可去从事更高端的AI和数据科学方面的工作。

 

与这7本书打交道时,我还有另外两个动因:


  • 首先,其内容可以作为我在牛津大学教授互联网数据科学课程的一部分,另外我本人还教授AI应用课程,在这些课程中我都要涉猎一些基础的数学方法。


  • 其次,我还在写一本从数学角度简化AI的书,目的是让14到18岁年龄段的读者也能看懂。理解数据科学和AI中的数学基础,你需要知道4类知识:线性代数,概率论,多变量微积分以及优化。这些知识大多数(至少是一部分)都来自于高中课本,因此我正在尝试通过强调数学建模的意义,将高中数学和AI、数据科学联系起来。也欢迎评论我的方法。



以下是书单以及我对这7本书的评价:

 

1. 《统计学习理论的本质》Vladimir Vapnik. 【有中、英文版】

 

没有涵盖这位伟大的俄罗斯数学家Vladimir Vapnik著作的数学推荐书单都是无稽之谈。所以,我把Vladimir Vapnik的《统计学习理论的本质》放在首位。在我的书单中,他的书是最难找到的。我有一本较早前的印度版本。他是支持向量机的发明者,维基百科中涵盖了很多关于他的成就的介绍。

 

2. 《Richard O Duda教你模式分类》(2007-12-24) Richard O Duda 【有英文版】

 

与Vapnik博士的书类似,Duda的书是另一个时代的经典力作。这本书最早发行于1973年,后改版了25次(至2000年),是一部有份量的数学学习资源。该书采用了模式识别方法,并提供了广泛的算法覆盖。

 

3. 《机器学习:从算法出发》第二版 (Chapman & Hall/Crc 机器学习与模式识别)  Stephen Marsland 【有英文版】

 

Stephen Marsland的书已经有了第二版。Stephen Marsland的这本是同类书中我读的最早的一批中的一本(我只有第一版)。两个版本都非常好。我认为该书的第二版会有更多的python代码。就像前两本一样,这本书非常强调算法。

 

4. 《统计学习基础:数据挖掘,推断与预测》 第二版  Trevor Hastie, Robert Tibshirani, Jerome Friedman 【有英文版】

 

又是一本经典之作。我有的这本书是彩色打印的,非常精美,可以作为学习的一本参考书。

 

5. 《模式识别与机器学习》(信息科学与统计学) Christopher M. Bishop 【有英文版】

 

Christopher M. Bishop的力作《模式识别与机器学习》(信息科学与统计学)是一本深入浅出的学习参考书。

 

6. 《机器学习:数据门类中算法的科学与艺术》Peter Flach 【有英文版】

 

虽然这本书在amazon上有评论说多文字而少代码,但我喜欢Peter Flach的书,特别是算法的分组(逻辑模型,线性模型,概率模型)以及其对主题的整体处理风格。

 

最后,是我最最推荐的一本:

 

7. 《深度学习》Goodfellow, Bengio and Corville 【有中文 draft版、英文版】

 

这是一本值得你从一字不落头读到尾的好书。该书既详细又现代,涵盖了你能想到的所有问题。

 

还有两本也值得阅读:

 

1. 《机器学习第一课》第二版 (机器学习与模式识别) Simon Rogers,Mark Girolami

 

这是我看的第一本AI和数据科学的书。他不太适合初学者,但是仍然是一本不错的书(特别是第二版)

 

2.《机器学习:从概率出发》 Kevin Murphy

 

这本书评价颇高,但是我自己还没有读过(所以没有列在7本书的范围之内)

 

如果我错过了一些好书,正好你又有其他推荐,也请让我了解。

 

总结评论

 

1. 除了《深度学习》,我不建议大家通读其他书籍。我更倾向于需要学习哪类知识就去读哪本书。我还喜欢不同作者在书中举的不同例子,比如Duda的鱼分类;Hastie的广告数据销售电视与广播;Flach假设空间概念与海洋动物的例子等等。


2. 我发现这些书还赋予了我一点点的谦卑,让我们知道这个世界浩瀚无垠,错综复杂,而我们实在是知之甚少。


3. 这些书也不会过时。Vladimir已经81岁高龄了,Duda的这本书发布于1973年,我希望50年后,整个行业仍然会去读它们。就像老朋友能经得起时间的考验一样,令人欣慰。同时,这也显示出数学方法的长寿与价值。

 

原文标题:

7 Books to Grasp Mathematical Foundations of Data Science and Machine Learning

原文链接:

https://www.kdnuggets.com/2018/04/7-books-mathematical-foundations-data-science.html


微信后台回复“7本书”获取文章内的书籍资源

译者简介

李海明  中国科学院大学在读研究生,铁人三项业余运动员,热爱音乐、艺术、生活。喜欢结交各路神仙~一起坐驰神游,一起南辕北辙

翻译组招募信息

工作内容:需要一颗细致的心,将选取好的外文文章翻译成流畅的中文。如果你是数据科学/统计学/计算机类的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友欢迎加入翻译小组。

你能得到:定期的翻译培训提高志愿者的翻译水平,提高对于数据科学前沿的认知,海外的朋友可以和国内技术应用发展保持联系,THU数据派产学研的背景为志愿者带来好的发展机遇。

其他福利:来自于名企的数据科学工作者,北大清华以及海外等名校学生他们都将成为你在翻译小组的伙伴。


点击文末“阅读原文”加入数据派团队~


转载须知

如需转载,请在开篇显著位置注明作者和出处(转自:数据派ID:datapi),并在文章结尾放置数据派醒目二维码。有原创标识文章,请发送【文章名称-待授权公众号名称及ID】至联系邮箱,申请白名单授权并按要求编辑。

发布后请将链接反馈至联系邮箱(见下方)。未经许可的转载以及改编者,我们将依法追究其法律责任。


点击“阅读原文”拥抱组织


登录查看更多
1

相关内容

数据科学(英語:data science)是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。 它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。 数据科学通过运用各种相关的数据来帮助非专业人士理解问题。
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【开源书】PyTorch深度学习起步,零基础入门(附pdf下载)
专知会员服务
110+阅读 · 2019年10月26日
【资源】机器学习数学全书,1900页PDF下载
全球人工智能
152+阅读 · 2019年10月17日
421页《机器学习数学基础》最新2019版PDF下载
381页机器学习数学基础PDF下载
专知
88+阅读 · 2018年10月9日
七本书籍带你打下机器学习和数据科学的数学基础
书单 | 深度学习修炼秘籍
机器学习算法与Python学习
10+阅读 · 2018年3月27日
7本最佳深度学习书籍,总有一本适合你
人工智能头条
6+阅读 · 2018年3月9日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
VIP会员
相关VIP内容
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【开源书】PyTorch深度学习起步,零基础入门(附pdf下载)
专知会员服务
110+阅读 · 2019年10月26日
相关资讯
【资源】机器学习数学全书,1900页PDF下载
全球人工智能
152+阅读 · 2019年10月17日
421页《机器学习数学基础》最新2019版PDF下载
381页机器学习数学基础PDF下载
专知
88+阅读 · 2018年10月9日
七本书籍带你打下机器学习和数据科学的数学基础
书单 | 深度学习修炼秘籍
机器学习算法与Python学习
10+阅读 · 2018年3月27日
7本最佳深度学习书籍,总有一本适合你
人工智能头条
6+阅读 · 2018年3月9日
Top
微信扫码咨询专知VIP会员