嘿,朋友,老夫掐指一算你就是“水军” | 论文访谈间 #13

2017 年 7 月 13 日 PaperWeekly 吴桐
「论文访谈间」是由 PaperWeekly 和中国中文信息学会青工委联合发起的论文报道栏目,旨在让国内优质论文得到更多关注和认可。 
这是第 13 期「论文访谈间」

论文作者 | 王雪鹏,刘康,何世柱,赵军(中科院自动化所)

特约记者 | 吴桐(东南大学)



不知多少人会像小编一样网购时需要绕过挡在头几条的层层水军,才能找到相对客观的评论,每当这个时候不免幻想如果机器能帮自己先筛一遍会是多么的方便。


仔细想来,这件事也不是那么难,假如我们可以获取评论者在历史操作中丰富的行为信息,依靠领域专家知识提取出有效特征就可以对评论的价值做出判断。然而没有历史记录的条件下这个问题会变得十分棘手。就像一幕话剧中,张三出场后一直在寻衅滋事,观众轻轻摇头——“一看就不是好东西”。如果这时李四出场了,那么问题来了,李四是好人么?……啊咧,李四还没做过什么呀,你问我我问谁? 


这便是垃圾评论检测中的冷启动问题,在新用户刚刚发布了一条评论时,传统方法很难获取足够量的信息,形成有效的特征,如此致使垃圾评论检测系统难以及时检测出新用户的评论。


中科院自动化所的王雪鹏同学、刘康老师、何世柱老师和赵军老师,在 ACL2017 上发表了一篇名为“Handling cold-start problem in review spam detection by jointly embedding texts and behaviors”的文章,针对这个未被前人探索过的问题,提出了一个基于图结构与卷积神经网络的模型,该模型通过对文本与行为信息联合编码来学习表示新用户的新评论。


实验结果显示本文所提出的模型能够有效地在冷启动状态下检测垃圾评论,并具有较好的领域适应性。该模型同样适用于无监督大规模数据学习。


▲ 图1:模型框架图


如图 1 所示,文中提出了基于图结构与卷积神经网络的模型来将文本信息与行为信息联合编码到评论的表示向量中,以在冷启动状态下检测垃圾评论。通过对评论系统的图结构进行建模,模型能够以一种无监督的方式记录现有用户的全局性行为足迹,从而进一步地捕捉到用户行为足迹中的潜在个人特性信息。


这种联合学习评论向量表示的方法能够有效地对用户的文本信息与行为信息之间的关联耦合性进行建模。当一个新用户发表了一条评论时,模型能够使用从大量已有评论中学习到文本信息(词向量)来表示这条评论,同时耦合关联在词向量中的行为信息也随之一起编码到了新评论的向量表示中去。最终,将新评论的表示向量输入到训练好的分类器中进行垃圾评论的检测。

▲ 图2:实验结果


实验部分通过如下几种特征及方法的组合在宾馆和餐厅的评论数据集上进行验证。其中 LF(linguistic features)代表传统评论文本特征,BF(behavioral features)代表传统用户行为特征,BF_EditSim 代表通过编辑距离计算后得到的相似评论的评论者的行为特征,BF_W2Vsim 代表通过计算评论(预训练)词向量平均值表示得到的相似评论的评论者行为特征,在文中另外定义了 RE(review embeddings),RRE(review’s rating embeddings)和 PRE(product’s average rating embeddings)等三种经训练得到的特征向量。


利用 SVM 对以上组合特征分别进行分类测试,文中所提出的模型在两个测试集上均表现不俗(图 2 中,1、2 行展示的是传统方法,3、4 行展示的是直觉方法,5、6 行展示的是本文联合学习方法)。 


冷启动问题是垃圾评论检测中的一项迫切而重要的任务,冷启动问题的解决能够及时而有效地减轻垃圾评论者对评论网站的攻击伤害。本文首次探索了冷启动问题,定性与定量地分析验证了传统文本特征与行为特征很难有效地在冷启动状态下检测垃圾评论,提出了一个基于图结构与卷积神经网络的模型,在冷启动状态下检测垃圾评论。


也许真的有一天技术成熟了,我们可以再也不用为满屏的垃圾评论感到苦恼了,想想真的还有点小激动呢。


迎点击「阅读原文」查看论文:

Handling cold-start problem in review spam detection by jointly embedding texts and behaviors


关于中国中文信息学会青工委


中国中文信息学会青年工作委员会是中国中文信息学会的下属学术组织,专门面向全国中文信息处理领域的青年学者和学生开展工作。


关于PaperWeekly


PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。


点击 |  阅读原文 | 查看论文
登录查看更多
0

相关内容

何世柱,博士,中科院自动化所模式识别国家重点实验室副研究员,2016年获得中国科学院大学工学博士学位。研究方向为自然语言处理、知识工程和问答系统。在ACL、EMNLP、CIKM、AAAI、IJCAI等自然语言处理、知识工程和人工智能国际重要会议发表论文20余篇。参与国家自然科学基金重点项目、973计划、863计划以及多项企业合作科研项目的研发,合作企业包括:华为、阿里巴巴、腾讯等,同时也开发了知识抽取,知识问答等多项工具和软件。目前主持国家自然科学基金青年科学基金项目“知识问答中的自然答案生成关键技术研究”,2018年获得中国中文信息学会钱伟长中文信息处理科学技术奖一等奖。
近期必读的五篇KDD 2020【图神经网络 (GNN) 】相关论文_Part2
专知会员服务
159+阅读 · 2020年6月30日
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
69+阅读 · 2020年4月7日
【WWW2020-UIUC】为新闻故事生成具有代表性的标题
专知会员服务
26+阅读 · 2020年3月18日
2019必读的十大深度强化学习论文
专知会员服务
57+阅读 · 2020年1月16日
近期必读的8篇 AAAI 2020【图神经网络(GNN)】相关论文
专知会员服务
76+阅读 · 2020年1月15日
近期必读的9篇 CVPR 2019【视觉目标跟踪】相关论文和代码
六篇 CIKM 2019 必读的【图神经网络(GNN)】长文论文
专知会员服务
37+阅读 · 2019年11月3日
7篇必读ACM MM 2019论文:图神经网络+多媒体
新智元
43+阅读 · 2019年11月9日
干货 | 为你解读34篇ACL论文
数据派THU
8+阅读 · 2018年6月7日
难?不难?机器学习套路就这三个!
聊聊架构
3+阅读 · 2017年10月25日
硬货 | 一文解读完五篇重磅ACL2017 NLP论文
有图才更有真相 | 论文访谈间 #16
PaperWeekly
5+阅读 · 2017年8月2日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
7+阅读 · 2018年1月31日
VIP会员
相关VIP内容
近期必读的五篇KDD 2020【图神经网络 (GNN) 】相关论文_Part2
专知会员服务
159+阅读 · 2020年6月30日
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
69+阅读 · 2020年4月7日
【WWW2020-UIUC】为新闻故事生成具有代表性的标题
专知会员服务
26+阅读 · 2020年3月18日
2019必读的十大深度强化学习论文
专知会员服务
57+阅读 · 2020年1月16日
近期必读的8篇 AAAI 2020【图神经网络(GNN)】相关论文
专知会员服务
76+阅读 · 2020年1月15日
近期必读的9篇 CVPR 2019【视觉目标跟踪】相关论文和代码
六篇 CIKM 2019 必读的【图神经网络(GNN)】长文论文
专知会员服务
37+阅读 · 2019年11月3日
相关论文
Arxiv
8+阅读 · 2019年5月20日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
7+阅读 · 2018年1月31日
Top
微信扫码咨询专知VIP会员