个性化学习推荐是智能学习的一个研究领域,其目标是在学习平台上给特定学习者提供有效学习资源,从而提升学习积极性与学习效果。虽然现有的推荐方法已被广泛用于教学场景,但教学活动自身的科学规律,使个性化学习推荐在个性化参数设置、推荐目标设定、评价标准设计等方面具有一定的特殊性。针对上述问题,在调研大量文献的基础上对近年来个性化学习推荐的研究进行了综述。从学习推荐通用框架、学习者建模、学习推荐对象建模、学习推荐算法、学习推荐评价五方面对个性化学习推荐的相关研究进行了系统的梳理和解读。首先提出了学习推荐系统的通用框架,其次介绍了学习者建模的思路和方法,接着讨论了学习推荐对象建模的思路和方法,然后归纳了学习推荐的算法与模型,接下来总结了学习推荐评价的设计与方法。并对这五方面现有研究的主要思想、实施方案、优势及不足进行了分析。最后还展望了个性化学习推荐未来的发展方向,为智能学习的进一步深入研究奠定了基础。
随着人工智能与大数据技术的广泛应用,教育大数据与教育数据挖掘以其丰富的内涵和实用性为智能教育中相关技术的发展注入了新的动力[1]。学习推荐系统是教育数据挖掘领域的重要研究方向,且被广泛地应用于各类智能学习系统[2]。在智能学习系统中,学习者利用各类学习资源加入教学活动,学习资源包括课件、多媒体和模拟场景、练习题和测验,甚至适度和生动的讨论话题等。这些学习资源由于内在关系可能组合形成一个复杂的结构[3],如图1所示,在线学习系统中的各类学习资源通常源自互联网或者教师。图中的正方形、六边形、圆形以及五边形分别表示不同种类的学习资源。同类学习资源之间存在知识的前序、后继、同级的层次关系,这种层次关系也可能存在于不同种类的资源间。而即使学习资源的类型不同,也可能具有相同知识、相同来源,属于相同课程,此外,它们之间还可能存在相互引用、扩展知识的关系。
图1 在线学习系统中学习资源的复杂关系
Fig.1 Complex relationship of learning resources in online learning system
学习者通过与学习资源的交互达到认知提升的目的,但由于学习资源种类数量繁多且结构复杂,因此有必要在学习系统中嵌入个性化功能,以适应性地跟踪学习者的进展,并提供适合他们需要的学习资源[4]。鉴于此,学习推荐系统(learning recommender system,LRS)应运而生。学习是一项具有综合性特征的活动,需要学习者长期持续的认知加工、情感投入乃至意志支撑。因此,与推荐系统在其他领域的应用不同,学习推荐不是为了预测或迎合学习者的潜在行为,而应该通过推荐的内容,辅助学习者在合适的学习进程中以合理的方式发现与其个性化参数相匹配的学习资源,从而保持学习者的积极性,并支持他们有效地完成学习活动[5]。
根据以上目标,本文从学习推荐系统的研究中归纳了三个核心问题:第一个是学习者建模问题,即如何对学习者的学习风格、认知水平、情感状态等信息进行全面捕获,并有效地建立学习者模型。第二个是学习推荐对象建模问题,即如何发掘学习推荐对象与学习者个性化参数相关联的信息,并有效地建立学习推荐对象模型。第三个是学习推荐算法设计问题,即采用何种计算模式将学习者模型和学习推荐资源模型有效结合,从而提升比较、过滤、匹配等操作的效率和精度。此外,建构主义学习理论认为,学习活动是学习者认知构建的过程,且具有持续性和连贯性,因此,对推荐效果的评价和跟踪也是学习推荐系统应解决的重要问题。
http://fcst.ceaj.org/article/2022/1673-9418/1673-9418-16-1-21.shtml
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“PLRS” 就可以获取《个性化学习推荐研究综述》专知下载链接