课程 | 12个适合机器学习入门的经典案例

2017 年 9 月 16 日 AI100 收录新知识的

古代神话中的实践者


机器学习,说简单就简单,说难还真难,对于还没入行的同学,大概最难的是如何入门机器学习?应该掌握哪些知识?看什么书最高效?如何避免绕弯?如何利用已有基础进一步提高水平?😔束手无策。


为帮助对机器学习感兴趣同学快速高效入门机器学习,AI100特邀中科院教授冒老师,为大家带来系列直播课《机器学习大咖版》课程从零开始讲解机器学习知识,结合12个机器学习经典案例,层层递进,直通机器学习的本质及其应用。


直播时间10月11日起,每周三、五晚,共12节

活动早鸟价399元,报名从速

报名 戳“阅读原文”

适合人群在校大学生/零基础/对机器学习感兴趣想要入行的小伙伴


冒老师

中科院副教授

计算机博士,现在中科院从事科研教学工作,十余年机器学习教学经验,主持国家级科研项目3项,研究方向为机器学习、计算机视觉及多媒体处理。

在CSDN学院授课过《XGBoost从基础到实战》《机器学习之数学基础》等系列精品直播,以专业实力爆表,亲和力爆表,课程群细致认真爆表,收获一大波冒菜(冒老师粉丝专属😄)。


机器学习简介

第一讲

10月11日

课程内容 1. 机器学习定义;
2. 机器学习行业应用举例;
3. 机器学习任务:分类、回归、聚类、降维、半监督学习、迁移学习、强化学习;

4. 机器学习算法的组成部分:目标函数(损失函数+正则)、优化方法;

5. 模型评估和模型选择:模型复杂度、overfitting、交叉验证、超参数空间、网格搜索…

案例 波士顿房价。
   包含知识点——
   损失函数、L1/L2正则、最小二乘、梯度下降/随机梯度下降。
课程目标 熟悉机器学习领域的常用术语,了解机器学习在AI环境中的位置。


第一个机器学习实例

第一个机器学习实例

第一个机器学习实例

第一个机器学习实例

第一个机器学习实例

第一个机器学习实例

第一个机器学习实例


第二讲

10月13日

课程内容 1. 学习环境配置:常用软件、环境配置及机器学习库
   anaconda:Python、Python科学计算包(NumPy,SciPy,Pandas)、Python数据可视化工具包(Matplotlib,  seaborn)、Python机器学习库(scikit-learn)
2. 特征工程初步
3. 线性回归实现
案例 波士顿房价预测案例详解。
   包含知识点——
   数据集探索(Pandas、seaborn);
   复习模型评估和模型选择:交叉验证、网格搜索(Sklearn)。

课程目标

学会用机器学习工具包从头到尾用线性回归解决一个实际问题。


Logistic回归分析及神经网络


第三讲

10月18日

课程内容 1. 损失函数:logistic损失
2. 优化算法:IRLS(梯度下降、牛顿法)、BP算法
3. 正则化:L1/ L2
4. 复习模型评估
案例 Otto商品分类
   
包含内容——
用Logistic回归和神经网络实现Otto商品分类
课程目标 理解分类任算法Logistic回归和神经网络原理,复习数据集探索,并学会用sklearn用Logistic


支持向量机(SVM)


第四讲

10月20日

课程内容 1. 损失函数:Hingloss损失
优化算法:SOM(神经网络聚类算法)支持向量机——SMO(序列最小最优化算法
2. 正则化:L2/L1
3. 其他:最小间隔、核方法、支持向量回归
案例 用SVM实现Otto商品分类,重点比较SVM(不同参数正则参数和核函数)与Logistic回归
课程目标 学会用SVM模型分类任务


降维与矩阵分解

第五讲

10月25日

课程内容 1. 主成分分析(PCA)
   2. 独立成分分析(ICA)
   3. 非负矩阵分解(NFM)
   4. 隐因子模型(LFM)
案例 人脸图像特征提取:
PCA、ICA、NFM
   
LFM在推荐系统部分案例进行讲解
课程目标 学习用降维技术对高维特征进行降维


聚类

第六讲

10月27日

课程内容 1.  Kmeans聚类和混合高斯模型GMM(EM算法)
   2. 吸引子传播聚类算法(Affinity Propagation聚类算法)
   3. Density Peak聚类算法
案例 1、Iris数据聚类分析:Kmeans、AP
   what makes Paris 2、Paris: 判别特征发现:聚类分类迭代(SVM、Kmeans)
课程目标 学会常用的聚类算法


特征工程 


第七讲

11月1日

课程内容 1、 数据预处理
2、 特征编码:标签编码、Dummy (One hot) 编码、后验均值编码
3、 特征组合
4、 特征选择
案例 案例:Rent Listing  Requries数据探索及特征工程
数据预处理:缺失值处理、异常值处理、数据相关性分析
数据可视化
特征编码:
课程目标 学会数据预处理常用方法及特征编码方法


决策树及基于树的集成模型:随机森林


第八讲

11月3日

课程内容 1. 损失函数:Gini系数
   2. 正则:L1/L2正则、及早停止
   3. 优化:分裂
   4. Bagging &随机森林
案例 蘑菇分类
   决策树、随机森林、Logistic回归
   参数调优和网格搜索
课程目标 学习Bagging集成思想及基于决策树的集成算法:随机森林


梯度提升决策树(GBDT)


第九讲

11月8日

课程内容 1. 第一个Boosting算法:AdaBoost
   2. 流行GBDT模型:xgboost、lightGBM
案例 Otto商品分类:xgboost及参数调优
课程目标 学会kaggle神器xgboost原理及其在实例任务上的应用


推荐系统与广告点击率(CTR)预估


第十讲

11月10日

课程内容 1. 协同过滤(Collaborative  filtering,CF)
   2. 基于内容的过滤
   3. FFM & LFM
   4. 关联规则
案例 Expedia Hotel Recommendations
课程目标 学习推荐系统和CTR预估的基本技术


推荐系统与广告点击率(CTR)预估 2


第十一讲

11月15日

课程内容 1、 排序学习
   2、模型评估
案例 Expedia Hotel Recommendations
课程目标 通过实际案例学会推荐系统实现


模型融合


第十二讲

11月17日

课程内容 1. Blending
   2. Stacking
案例 Otto商品分类/Expedia Hotel  Recommendations:Stacking
课程目标 出师,准备做一只机器学习大咖


 加入课程微信群 


扫码加课程小助手,回复“大咖”,进课程讨论群一起做机器学习大咖!


冒菜代表队发来贺电!!!
戳原文,抢早鸟票!!
登录查看更多
8

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【经典书】机器学习:贝叶斯和优化方法,1075页pdf
专知会员服务
404+阅读 · 2020年6月8日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
338+阅读 · 2020年3月17日
【经典书】Python数据数据分析第二版,541页pdf
专知会员服务
192+阅读 · 2020年3月12日
【新书】Python中的经典计算机科学问题,224页pdf
专知会员服务
144+阅读 · 2019年12月28日
【机器学习课程】机器学习中的常识性问题
专知会员服务
73+阅读 · 2019年12月2日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
82个Python机器学习代码和实践案例让你受益终生!
算法与数据结构
21+阅读 · 2018年12月26日
从入门到头秃,2018年机器学习图书TOP10
新智元
15+阅读 · 2018年12月8日
最适合机器学习新手的10种算法
论智
9+阅读 · 2018年1月23日
【入门】数据分析六部曲
36大数据
18+阅读 · 2017年12月6日
【机器学习】从零开始入门机器学习算法实践
产业智能官
10+阅读 · 2017年12月1日
数学不好能搞人工智能吗?
算法与数学之美
3+阅读 · 2017年11月27日
搞人工智能必备“数学库”
机器学习算法与Python学习
5+阅读 · 2017年11月20日
机器学习基础篇--监督学习经典案例(Python实现)
Python技术博文
8+阅读 · 2017年10月24日
如何用 3 个月零基础入门机器学习?
AI研习社
6+阅读 · 2017年9月27日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
【经典书】机器学习:贝叶斯和优化方法,1075页pdf
专知会员服务
404+阅读 · 2020年6月8日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
338+阅读 · 2020年3月17日
【经典书】Python数据数据分析第二版,541页pdf
专知会员服务
192+阅读 · 2020年3月12日
【新书】Python中的经典计算机科学问题,224页pdf
专知会员服务
144+阅读 · 2019年12月28日
【机器学习课程】机器学习中的常识性问题
专知会员服务
73+阅读 · 2019年12月2日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
相关资讯
82个Python机器学习代码和实践案例让你受益终生!
算法与数据结构
21+阅读 · 2018年12月26日
从入门到头秃,2018年机器学习图书TOP10
新智元
15+阅读 · 2018年12月8日
最适合机器学习新手的10种算法
论智
9+阅读 · 2018年1月23日
【入门】数据分析六部曲
36大数据
18+阅读 · 2017年12月6日
【机器学习】从零开始入门机器学习算法实践
产业智能官
10+阅读 · 2017年12月1日
数学不好能搞人工智能吗?
算法与数学之美
3+阅读 · 2017年11月27日
搞人工智能必备“数学库”
机器学习算法与Python学习
5+阅读 · 2017年11月20日
机器学习基础篇--监督学习经典案例(Python实现)
Python技术博文
8+阅读 · 2017年10月24日
如何用 3 个月零基础入门机器学习?
AI研习社
6+阅读 · 2017年9月27日
Top
微信扫码咨询专知VIP会员