作为布尔逻辑的替代
虽然逻辑是理性推理的数学基础和计算的基本原理,但它仅限于信息既完整又确定的问题。然而,许多现实世界的问题,从金融投资到电子邮件过滤,本质上是不完整或不确定的。概率论和贝叶斯计算共同提供了一个处理不完整和不确定数据的框架。
不完全和不确定数据的决策工具和方法
贝叶斯编程强调概率是布尔逻辑的替代选择,它涵盖了为真实世界的应用程序构建概率程序的新方法。本书由设计并实现了一个高效概率推理引擎来解释贝叶斯程序的团队编写,书中提供了许多Python示例,这些示例也可以在一个补充网站上找到,该网站还提供了一个解释器,允许读者试验这种新的编程方法。
原则和建模
只需要一个基本的数学基础,本书的前两部分提出了一种新的方法来建立主观概率模型。作者介绍了贝叶斯编程的原理,并讨论了概率建模的良好实践。大量简单的例子突出了贝叶斯建模在不同领域的应用。
形式主义和算法
第三部分综合了已有的贝叶斯推理算法的工作,因为需要一个高效的贝叶斯推理引擎来自动化贝叶斯程序中的概率演算。对于想要了解贝叶斯编程的形式主义、主要的概率模型、贝叶斯推理的通用算法和学习问题的读者,本文提供了许多参考书目。
常见问题
第四部分连同词汇表包含了常见问题的答案。作者比较了贝叶斯规划和可能性理论,讨论了贝叶斯推理的计算复杂性,讨论了不完全性的不可约性,讨论了概率的主观主义和客观主义认识论。
贝叶斯计算机的第一步
创建一个完整的贝叶斯计算框架需要新的建模方法、新的推理算法、新的编程语言和新的硬件。本书着重于方法论和算法,描述了实现这一目标的第一步。它鼓励读者探索新兴领域,例如仿生计算,并开发新的编程语言和硬件架构。
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“BP378” 可以获取《贝叶斯编程,378页pdf,Bayesian Programming》专知下载链接索引