上海药物所通过多任务深度神经网络建立药物调控激酶谱的预测分析方法

2019 年 8 月 29 日 中国生物技术网
蛋白激酶(protein kinases)是细胞功能的关键调节分子,是生物体内最大且功能最多样的基因家族之一。因此,激酶是开发治疗癌症、炎症、糖尿病、心血管疾病和阿尔兹海默症等相关疾病药物的重要靶标。然而,由于激酶家族蛋白质(特别是催化域)结构的高度保守性,给高效选择性激酶抑制剂的开发带来了巨大挑战。
二十一世纪以来,随着计算机计算能力的迅猛提升和大数据的涌现,深度学习在机器学习算法的基础上快速崛起,并在药物研发领域得到广泛应用。然而,对许多尚未经过充分深入研究的激酶靶标,目前已有的数据还远远达不到训练中等规模神经网络所需的量级。因此,传统的单任务神经网络模型通常难以取得较好的泛化性能。
  为了解决这一问题,中国科学院上海药物研究所蒋华良、郑明月团队采用了多任务深度神经网络(multitask deep neural network)建立分类模型解决化合物的激酶谱预测问题。多任务深度神经网络通过任务间的迁移学习,可以高效解决具有相关性的多类别分类问题,对于众多激酶靶标,共享的保守催化域使得多重活性预测任务紧密相关。因此,利用多任务深度神经网络可以有效减少特定激酶数据不足对模型泛化性能的限制。此外,多任务神经网络只需建立一个模型即可对整体激酶谱进行预测,无需多次建模,并且通过使用共享表示减少了模型参数的规模,可以使模型的训练学习过程更加高效。
上述研究结果近期在线发表于Journal of Medicinal Chemistry,题为Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation,并被选为封面论文。上海药物所药物设计与发现中心(DDDC)郑明月为论文通讯作者,第一作者是药物发现与设计中心博士研究生李叙潼。
 
基于多任务神经网络的药物激酶谱预测流程
 
多任务神经网络与随机森林预测表现对比
 
(左)对五个化合物预测与实验得到的激酶图谱,标记为红色的激酶表示预测或实验测定为活性。(右)预测与实验得到的激酶家族选择性,当一个家族的odds ratio显著大于1(红色),认为化合物对该激酶家族具有选择性。


中国生物技术网诚邀生物领域科学家在我们的平台上,发表和介绍国内外原创的科研成果。


注:国内为原创研究成果或评论、综述,国际为在线发表一个月内的最新成果或综述,字数500字以上,并请提供至少一张图片。投稿者,请将文章发送至weixin@im.ac.cn


本公众号由中国科学院微生物研究所信息中心承办

微信公众号:中国生物技术网

回复关键词热点”可阅读热点专题文章,包括“施一公”、“肠道菌群”、“肿瘤”、“免疫”和“健康”

近期热文

直接点击文字即可浏览!

1、补牙或将成为历史?

2、科学你慢慢学,中医我先治病去了

3、科学告诉你应该多久洗一次澡

4、新证据:喝咖啡能延长寿命!

5、据说,这是生物医学硕士博士生的真实的生活写照
6、一顿早餐到底有多重要?
7、情商也是把双刃剑!高情商或让你更脆弱
8、施一公:压死骆驼的最后一根稻草,是鼓励科学家创业!
9、“科学禁食法”真能降低重大疾病风险
10、睡眠科学家揭示出8种睡好觉的秘诀

11、有志者事竟成!2型糖尿病成功被逆转

12、每周两半小时,任何形式的锻炼都可以使你更长寿

13、喝醉以后,你以为睡一觉就没事儿了?!

14、仰卧起坐等或将成为延寿运动?

15、冥想、瑜伽、太极等不仅能够改善身心健康...



登录查看更多
0

相关内容

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。
高效医疗图像分析的统一表示
专知会员服务
34+阅读 · 2020年6月23日
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
61+阅读 · 2020年5月25日
【CVPR2020】用多样性最大化克服单样本NAS中的多模型遗忘
【CVPR2020-CMU】无数据模型选择,一种深度框架潜力
专知会员服务
22+阅读 · 2020年4月12日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
【华侨大学】基于混合深度学习算法的疾病预测模型
专知会员服务
96+阅读 · 2020年1月21日
【Blood】去甲基化治疗失败后,MDS应如何治疗?
2017-2018年抗肿瘤药物行业研究报告
行业研究报告
7+阅读 · 2018年11月1日
已删除
将门创投
6+阅读 · 2017年7月6日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
Arxiv
6+阅读 · 2018年8月27日
Arxiv
5+阅读 · 2018年5月10日
Arxiv
7+阅读 · 2018年1月18日
VIP会员
Top
微信扫码咨询专知VIP会员