【NeurIPS2021】用于文本图表示学习的 GNN 嵌套 Transformer 模型:GraphFormers

2021 年 11 月 24 日 专知


用于文本图表示学习的 GNN 嵌套 Transformer 模型:GraphFormers

GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph


论文摘要:文本图的表示学习是基于单个文本特征和邻域信息为节点生成低维嵌入。现有的工作主要依赖于级联模型结构:首先通过语言模型对节点的文本特征进行独立编码;然后通过图神经网络对文本嵌入进行聚合。然而这种文本特征独立建模的结构限制了模型的效果。故本文提出了 GraphFormers ——将 GNN 组件嵌套在 Transformer 语言模型的一种新架构。在该架构中,文本编码和图聚合融合为一个迭代工作流,使得每个节点的语义都能从全局角度准确理解。此外,还引入了一种渐进式学习策略,该策略在操作数据和原始数据上连续训练模型,以增强其在图形上整合信息的能力。实验证明,本文提出的架构在 3 个数据集上都取得了最好结果。


https://www.zhuanzhi.ai/paper/fe680cfb84881e3cd10ad6cb93a66978



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“GRFM” 就可以获取【NeurIPS2021】用于文本图表示学习的 GNN 嵌套 Transformer 模型:GraphFormers》专知下载链接

专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!


欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

表示学习是通过利用训练数据来学习得到向量表示,这可以克服人工方法的局限性。 表示学习通常可分为两大类,无监督和有监督表示学习。大多数无监督表示学习方法利用自动编码器(如去噪自动编码器和稀疏自动编码器等)中的隐变量作为表示。 目前出现的变分自动编码器能够更好的容忍噪声和异常值。 然而,推断给定数据的潜在结构几乎是不可能的。 目前有一些近似推断的策略。 此外,一些无监督表示学习方法旨在近似某种特定的相似性度量。提出了一种无监督的相似性保持表示学习框架,该框架使用矩阵分解来保持成对的DTW相似性。 通过学习保持DTW的shaplets,即在转换后的空间中的欧式距离近似原始数据的真实DTW距离。有监督表示学习方法可以利用数据的标签信息,更好地捕获数据的语义结构。 孪生网络和三元组网络是目前两种比较流行的模型,它们的目标是最大化类别之间的距离并最小化了类别内部的距离。
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
50+阅读 · 2021年5月19日
【NeurIPS2020】图神经网络中的池化再思考
专知会员服务
51+阅读 · 2020年10月25日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
【KDD2020-UCLA-微软】GPT-GNN:图神经网络的预训练
专知会员服务
62+阅读 · 2020年8月19日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
71+阅读 · 2019年11月3日
GNN + Transformer = GraphFormers
图与推荐
6+阅读 · 2021年11月24日
【WSDM2022】具有分层注意力的图嵌入
专知
0+阅读 · 2021年11月17日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
15+阅读 · 2020年2月5日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
VIP会员
相关VIP内容
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
50+阅读 · 2021年5月19日
【NeurIPS2020】图神经网络中的池化再思考
专知会员服务
51+阅读 · 2020年10月25日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
【KDD2020-UCLA-微软】GPT-GNN:图神经网络的预训练
专知会员服务
62+阅读 · 2020年8月19日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
71+阅读 · 2019年11月3日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
相关论文
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
15+阅读 · 2020年2月5日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Top
微信扫码咨询专知VIP会员