基于深度学习的文本分类应用!

2020 年 8 月 10 日 AINLP

 Datawhale干货 

作者:罗美君,算法工程师,Datawhale优秀学习者


基于机器学习的文本分类 中,我们介绍了几种常见的文本表示方法:One-hot、Bags of Words、N-gram、TF-IDF。这些方法存在两个共同的问题:一是转换得到的向量维度很高,需要较长的训练实践;二是没有考虑到单词与单词之间的关系,只是进行了统计。
与上述表示方法不同,深度学习也可以用于文本表示,并可以将其映射到一个低维空间。fastText是Facebook2016年提出的文本分类工具,是一种高效的浅层网络。今天我们就尝试使用fastText模型进行文本分类。

1. 数据及背景

https://tianchi.aliyun.com/competition/entrance/531810/information(阿里天池-零基础入门NLP赛事)

2. fastText模型剖析

2.1 概念

FastText是一种典型的深度学习词向量的表示方法,它的核心思想是将整篇文档的词及n-gram向量叠加平均得到文档向量,然后使用文档向量做softmax多分类。这中间涉及到两个技巧:字符级n-gram特征的引入以及分层Softmax分类。

2.2 模型框架

fastText模型架构和word2vec的CBOW模型架构非常相似。下面是fastText模型架构图:

注意:此架构图没有展示词向量的训练过程。可以看到,和CBOW一样,fastText模型也只有三层:输入层、隐含层、输出层(Hierarchical Softmax),输入都是多个经向量表示的单词,输出都是一个特定的target,隐含层都是对多个词向量的叠加平均。

不同的是,CBOW的输入是目标单词的上下文,fastText的输入是多个单词及其n-gram特征,这些特征用来表示单个文档;CBOW的输入单词被onehot编码过,fastText的输入特征是被embedding过;CBOW的输出是目标词汇,fastText的输出是文档对应的类标。

值得注意的是,fastText在输入时,将单词的字符级别的n-gram向量作为额外的特征;在输出时,fastText采用了分层Softmax,大大降低了模型训练时间。

2.3 字符级别的n-gram

word2vec把语料库中的每个单词当成原子的,它会为每个单词生成一个向量。这忽略了单词内部的形态特征,比如:"apple" 和"apples","达观数据"和"达观",这两个例子中,两个单词都有较多公共字符,即它们的内部形态类似,但是在传统的word2vec中,这种单词内部形态信息因为它们被转换成不同的id丢失了。

为了克服这个问题,fastText使用了字符级别的n-grams来表示一个单词。对于单词"apple",假设n的取值为3,则它的trigram有:

"<ap",  "app",  "ppl",  "ple", "le>"

其中,<表示前缀,>表示后缀。于是,我们可以用这些trigram来表示"apple"这个单词,进一步,我们可以用这5个trigram的向量叠加来表示"apple"的词向量。

这带来两点好处:

  • 对于低频词生成的词向量效果会更好。因为它们的n-gram可以和其它词共享。

  • 对于训练词库之外的单词,仍然可以构建它们的词向量。我们可以叠加它们的字符级n-gram向量。

2.4 分层softmax

fastText的结构:
  1. 文本分词后排成列做输入。
  2. lookup table变成想要的隐层维数。
  3. 隐层后接huffman Tree。这个tree就是分层softmax减少计算量的精髓。

3. 简单实现fastText

为了简化任务:
  1. 训练词向量时,我们使用正常的word2vec方法,而真实的fastText还附加了字符级别的n-gram作为特征输入;
  2. 我们的输出层使用简单的softmax分类,而真实的fastText使用的是Hierarchical Softmax。

首先定义几个常量:

  •     VOCAB_SIZE = 2000

  •     EMBEDDING_DIM =100

  •     MAX_WORDS = 500

  •     CLASS_NUM = 5

  •     VOCAB_SIZE表示词汇表大小,这里简单设置为2000;

EMBEDDING_DIM表示经过embedding层输出,每个词被分布式表示的向量的维度,这里设置为100。比如对于“达观”这个词,会被一个长度为100的类似于[ 0.97860014, 5.93589592, 0.22342691, -3.83102846, -0.23053935, …]的实值向量来表示;

MAX_WORDS表示一篇文档最多使用的词个数,因为文档可能长短不一(即词数不同),为了能feed到一个固定维度的神经网络,我们需要设置一个最大词数,对于词数少于这个阈值的文档,我们需要用“未知词”去填充。比如可以设置词汇表中索引为0的词为“未知词”,用0去填充少于阈值的部分;

CLASS_NUM表示类别数,多分类问题,这里简单设置为5。

模型搭建遵循以下步骤:

  1. 添加输入层(embedding层)。Embedding层的输入是一批文档,每个文档由一个词汇索引序列构成。例如:[10, 30, 80, 1000] 可能表示“我 昨天 来到 达观数据”这个短文本,其中“我”、“昨天”、“来到”、“达观数据”在词汇表中的索引分别是10、30、80、1000;Embedding层将每个单词映射成EMBEDDING_DIM维的向量。于是:input_shape=(BATCH_SIZE, MAX_WORDS), output_shape=(BATCH_SIZE,MAX_WORDS, EMBEDDING_DIM);

  2. 添加隐含层(投影层)。投影层对一个文档中所有单词的向量进行叠加平均。keras提供的GlobalAveragePooling1D类可以帮我们实现这个功能。这层的input_shape是Embedding层的output_shape,这层的output_shape=( BATCH_SIZE, EMBEDDING_DIM);

  3. 添加输出层(softmax层)。真实的fastText这层是Hierarchical Softmax,因为keras原生并没有支持Hierarchical Softmax,所以这里用Softmax代替。这层指定了CLASS_NUM,对于一篇文档,输出层会产生CLASS_NUM个概率值,分别表示此文档属于当前类的可能性。这层的output_shape=(BATCH_SIZE, CLASS_NUM)

  4. 指定损失函数、优化器类型、评价指标,编译模型。损失函数我们设置为categorical_crossentropy,它就是我们上面所说的softmax回归的损失函数;优化器我们设置为SGD,表示随机梯度下降优化器;评价指标选择accuracy,表示精度。

用训练数据feed模型时,你需要:

  1. 将文档分好词,构建词汇表。词汇表中每个词用一个整数(索引)来代替,并预留“未知词”索引,假设为0;
  2. 对类标进行onehot化。假设我们文本数据总共有3个类别,对应的类标分别是1、2、3,那么这三个类标对应的onehot向量分别是[1, 0,0]、[0, 1, 0]、[0, 0, 1];
  3. 对一批文本,将每个文本转化为词索引序列,每个类标转化为onehot向量。就像之前的例子,“我 昨天 来到 达观数据”可能被转化为[10, 30, 80, 1000];它属于类别1,它的类标就是[1, 0, 0]。由于我们设置了MAX_WORDS=500,这个短文本向量后面就需要补496个0,即[10, 30, 80, 1000, 0, 0, 0, …, 0]。因此,batch_xs的 维度为( BATCH_SIZE,MAX_WORDS),batch_ys的维度为(BATCH_SIZE, CLASS_NUM)。

代码如下:

# coding: utf-8from __future__ import unicode_literals
from keras.models import Sequentialfrom keras.layers import Embeddingfrom keras.layers import GlobalAveragePooling1Dfrom keras.layers import Dense
VOCAB_SIZE = 2000EMBEDDING_DIM = 100MAX_WORDS = 500CLASS_NUM = 5

def build_fastText(): model = Sequential() # 将词汇数VOCAB_SIZE映射为EMBEDDING_DIM维 model.add(Embedding(VOCAB_SIZE, EMBEDDING_DIM, input_length=MAX_WORDS)) # 平均文档中所有词的embedding model.add(GlobalAveragePooling1D()) # softmax分类 model.add(Dense(CLASS_NUM, activation='softmax')) # 定义损失函数、优化器、分类度量指标 model.compile(loss='categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) return model
if __name__ == '__main__': model = build_fastText() print(model.summary())


4. 使用fastText文本分类

4.1 加载库

import timeimport numpy as npimport fasttextimport pandas as pd
from sklearn.metrics import f1_scorefrom sklearn.utils import shufflefrom sklearn.model_selection import StratifiedKFold

4.2 fastText分类

主要超参数:
  • lr: 学习率

  • dim: 词向量的维度

  • epoch: 每轮的个数

  • wordNgrams: 词的n-gram,一般设置为2或3

  • loss: 损失函数 ns(negative sampling, 负采样)、hs(hierarchical softmax, 分层softmax)、softmax、ova(One-VS-ALL)

def fasttext_model(nrows, train_num, lr=1.0, wordNgrams=2, minCount=1, epoch=25, loss='hs', dim=100):    start_time = time.time()
# 转换为FastText需要的格式 train_df = pd.read_csv('../input/train_set.csv', sep='\t', nrows=nrows)
# shuffle train_df = shuffle(train_df, random_state=666)
train_df['label_ft'] = '__label__' + train_df['label'].astype('str') train_df[['text', 'label_ft']].iloc[:train_num].to_csv('../input/fastText_train.csv', index=None, header=None, sep='\t')
model = fasttext.train_supervised('../input/fastText_train.csv', lr=lr, wordNgrams=wordNgrams, verbose=2, minCount=minCount, epoch=epoch, loss=loss, dim=dim)
train_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[:train_num]['text']] print('Train f1_score:', f1_score(train_df['label'].values[:train_num].astype(str), train_pred, average='macro')) val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[train_num:]['text']] print('Val f1_score:', f1_score(train_df['label'].values[train_num:].astype(str), val_pred, average='macro')) train_time = time.time() print('Train time: {:.2f}s'.format(train_time - start_time))
# 预测并保存 test_df = pd.read_csv('../input/test_a.csv')
test_pred = [model.predict(x)[0][0].split('__')[-1] for x in test_df['text']] test_pred = pd.DataFrame(test_pred, columns=['label']) test_pred.to_csv('../input/test_fastText_ridgeclassifier.csv', index=False) print('Test predict saved.') end_time = time.time() print('Predict time:{:.2f}s'.format(end_time - train_time))

if __name__ == '__main__': nrows = 200000 train_num = int(nrows * 0.7) lr=0.01 wordNgrams=2 minCount=1 epoch=25 loss='hs'
fasttext_model(nrows, train_num)

结果:

Train f1_score: 0.998663548149514Val f1_score: 0.911468448971427Train time: 257.32sTest predict saved.Predict time:13.40s

4.3 K折交叉验证

在使用FastText中,有一些模型的参数需要选择,这些参数会在一定程度上影响模型的精度,那么如何选择这些参数呢?有两种方式:

  • 通过阅读文档,要弄清楚这些参数的含义,哪些参数会增加模型的复杂度;
  • 通过在验证集上进行验证模型精度,找到模型是否过拟合或欠拟合。

这里我们采用第二种方法,用K折交叉验证的思想进行参数调节。注意:每折的划分必须保证标签的分布与整个数据集的分布一致。

models = []scores = []pred_list = []
# K折交叉验证skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=666)for train_index, test_index in skf.split(train_df['text'], train_df['label_ft']):
train_df[['text', 'label_ft']].iloc[train_index].to_csv('../input/fastText_train.csv', index=None, header=None, sep='\t')
model = fasttext.train_supervised('../input/fastText_train.csv', lr=lr, wordNgrams=wordNgrams, verbose=2, minCount=minCount, epoch=epoch, loss=loss) models.append(model)
val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[test_index]['text']] score = f1_score(train_df['label'].values[test_index].astype(str), val_pred, average='macro') print('score', score) scores.append(score)
print('mean score: ', np.mean(scores))train_time = time.time()print('Train time: {:.2f}s'.format(train_time - start_time))

所有代码

def fasttext_kfold_model(nrows, train_num, n_splits, lr=1.0, wordNgrams=2, minCount=1, epoch=25, loss='hs', dim=100):    start_time = time.time()
# 转换为FastText需要的格式 train_df = pd.read_csv('../input/train_set.csv', sep='\t', nrows=nrows)
# shuffle train_df = shuffle(train_df, random_state=666)
train_df['label_ft'] = '__label__' + train_df['label'].astype('str')
models = [] train_scores = [] val_scores = []
# K折交叉验证 skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=666) for train_index, test_index in skf.split(train_df['text'], train_df['label_ft']): train_df[['text', 'label_ft']].iloc[train_index].to_csv('../input/fastText_train.csv', index=None, header=None, sep='\t')
model = fasttext.train_supervised('../input/fastText_train.csv', lr=lr, wordNgrams=wordNgrams, verbose=2, minCount=minCount, epoch=epoch, loss=loss) models.append(model)
train_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[train_index]['text']] train_score = f1_score(train_df['label'].values[train_index].astype(str), train_pred, average='macro') # print('Train length: ', len(train_pred)) print('Train score: ', train_score) train_scores.append(train_score)
val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[test_index]['text']] val_score = f1_score(train_df['label'].values[test_index].astype(str), val_pred, average='macro') # print('Val length: ', len(val_pred)) print('Val score', val_score) val_scores.append(val_score)
print('mean train score: ', np.mean(train_scores)) print('mean val score: ', np.mean(val_scores)) train_time = time.time() print('Train time: {:.2f}s'.format(train_time - start_time))
return models
def fasttext_kfold_predict(models, n_splits):
pred_list = []
start_time = time.time() # 预测并保存 test_df = pd.read_csv('../input/test_a.csv')
# 消耗时间较长 for model in models: test_pred = [model.predict(x)[0][0].split('__')[-1] for x in test_df['text']] pred_list.append(test_pred)
test_pred_label = pd.DataFrame(pred_list).T.apply(lambda row: np.argmax(np.bincount([row[i] for i in range(n_splits)])), axis=1) test_pred_label.columns='label'
test_pred_label.to_csv('../input/test_fastText_ridgeclassifier.csv', index=False) print('Test predict saved.') end_time = time.time() print('Predict time:{:.2f}s'.format(end_time - start_time))

if __name__ == '__main__': nrows = 200000 train_num = int(nrows * 0.7) n_splits = 3 lr=0.1 wordNgrams=2 minCount=1 epoch=25 loss='hs' dim=200
""" Train score: 0.9635013320936988 Val score 0.9086640111428032 Train score: 0.9623510782430645 Val score 0.9094998879044359 Train score: 0.9628121318772955 Val score 0.9096191534698315 mean train score: 0.9628881807380196 mean val score: 0.9092610175056901 Train time: 740.60s """
models = fasttext_kfold_model(nrows, train_num, n_splits, lr=lr, wordNgrams=wordNgrams, minCount=minCount, epoch=epoch, loss=loss, dim=dim)    fasttext_kfold_predict(models, n_splits=n_splits)

K折交叉验证能增加模型的稳定性,尤其时间有限,验证的结果仅达0.909,有时间的朋友可以调整超参数,获得更高的准确率。





欢迎加入AINLP预训练模型技术交流群
进群请添加AINLP小助手微信 AINLPer(id: ainlper),备注文本分类


推荐阅读

这个NLP工具,玩得根本停不下来

征稿启示| 200元稿费+5000DBC(价值20个小时GPU算力)

完结撒花!李宏毅老师深度学习与人类语言处理课程视频及课件(附下载)

从数据到模型,你可能需要1篇详实的pytorch踩坑指南

如何让Bert在finetune小数据集时更“稳”一点

模型压缩实践系列之——bert-of-theseus,一个非常亲民的bert压缩方法

文本自动摘要任务的“不完全”心得总结番外篇——submodular函数优化

Node2Vec 论文+代码笔记

模型压缩实践收尾篇——模型蒸馏以及其他一些技巧实践小结

中文命名实体识别工具(NER)哪家强?

学自然语言处理,其实更应该学好英语

斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用

关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLPer(id:ainlper),备注工作/研究方向+加群目的。


阅读至此了,分享、点赞、在看三选一吧🙏

登录查看更多
1

相关内容

【文本分类大综述:从浅层到深度学习,35页pdf】
专知会员服务
187+阅读 · 2020年8月6日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
【ACL2020】基于图神经网络的文本分类新方法
专知会员服务
68+阅读 · 2020年7月12日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
基于多头注意力胶囊网络的文本分类模型
专知会员服务
76+阅读 · 2020年5月24日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
212+阅读 · 2020年4月26日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
NLP基础任务:文本分类近年发展汇总,68页超详细解析
专知会员服务
57+阅读 · 2020年1月3日
深度学习的下一步:Transformer和注意力机制
云头条
56+阅读 · 2019年9月14日
一文综述经典的深度文本分类方法
AI100
12+阅读 · 2019年6月8日
一文读懂深度学习文本分类方法
AINLP
15+阅读 · 2019年6月6日
图卷积神经网络(GCN)文本分类详述
专知
279+阅读 · 2019年4月5日
【长篇干货】深度学习在文本分类中的应用
七月在线实验室
27+阅读 · 2018年4月4日
基于深度学习的文本分类?
数萃大数据
9+阅读 · 2018年3月4日
深度学习在文本分类中的应用
AI研习社
13+阅读 · 2018年1月7日
基于典型相关分析的词向量
AI研习社
7+阅读 · 2017年12月24日
基于 word2vec 和 CNN 的文本分类 :综述 & 实践
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Tutorial on NLP-Inspired Network Embedding
Arxiv
7+阅读 · 2019年10月16日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
Arxiv
15+阅读 · 2019年6月25日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
4+阅读 · 2019年1月1日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年5月21日
VIP会员
相关VIP内容
【文本分类大综述:从浅层到深度学习,35页pdf】
专知会员服务
187+阅读 · 2020年8月6日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
【ACL2020】基于图神经网络的文本分类新方法
专知会员服务
68+阅读 · 2020年7月12日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
基于多头注意力胶囊网络的文本分类模型
专知会员服务
76+阅读 · 2020年5月24日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
212+阅读 · 2020年4月26日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
NLP基础任务:文本分类近年发展汇总,68页超详细解析
专知会员服务
57+阅读 · 2020年1月3日
相关资讯
深度学习的下一步:Transformer和注意力机制
云头条
56+阅读 · 2019年9月14日
一文综述经典的深度文本分类方法
AI100
12+阅读 · 2019年6月8日
一文读懂深度学习文本分类方法
AINLP
15+阅读 · 2019年6月6日
图卷积神经网络(GCN)文本分类详述
专知
279+阅读 · 2019年4月5日
【长篇干货】深度学习在文本分类中的应用
七月在线实验室
27+阅读 · 2018年4月4日
基于深度学习的文本分类?
数萃大数据
9+阅读 · 2018年3月4日
深度学习在文本分类中的应用
AI研习社
13+阅读 · 2018年1月7日
基于典型相关分析的词向量
AI研习社
7+阅读 · 2017年12月24日
基于 word2vec 和 CNN 的文本分类 :综述 & 实践
相关论文
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Tutorial on NLP-Inspired Network Embedding
Arxiv
7+阅读 · 2019年10月16日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
Arxiv
15+阅读 · 2019年6月25日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
4+阅读 · 2019年1月1日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年5月21日
Top
微信扫码咨询专知VIP会员