重磅!就在刚刚,吊打一切的 YOLOv4 开源了!

2020 年 4 月 24 日 极市平台

加入极市专业CV交流群,与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度 等名校名企视觉开发者互动交流!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注 极市平台 公众号 ,回复 加群,立刻申请入群~



Tips

◎作者系 极市原创作者计划 特约作者Happy
欢迎大家联系极市小编(微信ID:fengcall19)加入极市原创作者行列

早上刷到YOLOv4之时,非常不敢相信这是真的!

paper:https://arxiv.org/pdf/2004.10934.pdf,

code:https://github.com/AlexeyAB/darknet

核心中的核心:作者将Weighted-Residual-Connections(WRC), Cross-Stage-Partial-connections(CSP), Cross mini-Batch Normalization(CmBN), Self-adversarial-training(SAT),Mish-activation Mosaic data augmentation, DropBlock, CIoU等组合得到了爆炸性的YOLOv4,可以吊打一切的YOLOv4.在MS-COCO数据上:43.5%@AP(65.7%@AP50)同时可以达到65fps@TeslaV100.

Contribution

作者设计YOLO的目的之初就是设计一个快速而高效的目标检测器。该文的贡献主要有以下几点:

  • 设计了一种快速而强有力的目标检测器,它使得任何人仅需一个1080Ti或者2080Ti即可训练这样超快且精确的目标检测器你;
  • (不会翻译直接上英文)We verify the influence of SOTA bag-of-freebies and bag-of-specials methods of object detection during detector training
  • 作者对SOTA方法进行改进(含CBN、PAN,SAM)以使其更适合单GPU训练

Method

作者在现有实时网络的基础上提出了两种观点:

  • 对于GPU而言,在组卷积中采用小数量的groups(1-8),比如CSPResNeXt50/CSPDarknet53;
  • 对于VPU而言,采用组卷积而不采用SE模块。

网路结构选择

网络结构选择是为了在输入分辨率、网络层数、参数量、输出滤波器数之间寻求折中。作者研究表明:CSPResNeXt50在分类方面优于CSPDarkNet53,而在检测方面反而表现要差

网络主要结构确定了后,下一个目标是选择额外的模块以提升感受野、更好的特征汇聚模块(如FPN、PAN、ASFF、BiFPN)。对于分类而言最好的模型可能并不适合于检测,相反,检测模型需要具有以下特性:

  • 更高的输入分辨率,为了更好的检测小目标;
  • 更多的层,为了具有更大的感受野;
  • 更多的参数,更大的模型可以同时检测不同大小的目标。

一句话就是:选择具有更大感受野、更大参数的模型作为backbone。下图给出了不同backbone的上述信息对比。从中可以看到:CSPResNeXt50仅仅包含16个卷积层,其感受野为425x425,包含20.6M参数;而CSPDarkNet53包含29个卷积层,725x725的感受野,27.6M参数。这从理论与实验角度表明:CSPDarkNet53更适合作为检测模型的Backbone

在CSPDarkNet53基础上,作者添加了SPP模块,因其可以提升模型的感受野、分离更重要的上下文信息、不会导致模型推理速度的下降;与此同时,作者还采用PANet中的不同backbone级的参数汇聚方法替代FPN。

最终的模型为:CSPDarkNet53+SPP+PANet(path-aggregation neck)+YOLOv3-head = YOLOv4.

Tricks选择

为更好的训练目标检测模型,CNN模型通常具有以下模块:

  • Activations:ReLU、Leaky-ReLU、PReLU、ReLU6、SELU、Swish or Mish
  • Bounding box regression Loss:MSE、IoU、GIoU、CIoU、DIoU
  • Data Augmentation:CutOut、MixUp、CutMix
  • Regularization:DropOut、DropPath、Spatial DropOut、DropBlock
  • Normalization:BN、SyncBn、FRN、CBN
  • Skip-connections:Residual connections, weighted residual connections, Cross stage partial connections

作者从上述模块中选择如下:激活函数方面选择Mish;正则化方面选择DropBlock;由于聚焦在单GPU,故而未考虑SyncBN。

其他改进策略

为使得所涉及的检测器更适合于单GPU,作者还进行了其他几项额外设计与改进:

  • 引入一种新的数据增广方法:Mosaic与自对抗训练;
  • 通过GA算法选择最优超参数;
  • 对现有方法进行改进以更适合高效训练和推理:改进SAM、改进PAN,CmBN。

YOLOv4

总而言之,YOLOv4包含以下信息:

  • Backbone:CSPDarkNet53
  • Neck:SPP,PAN
  • Head:YOLOv3
  • Tricks(backbone):CutMix、Mosaic、DropBlock、Label Smoothing
  • Modified(backbone): Mish、CSP、MiWRC
  • Tricks(detector):CIoU、CMBN、DropBlock、Mosaic、SAT、Eliminate grid sensitivity、Multiple Anchor、Cosine Annealing scheduler、Random training shape
  • Modified(tector):Mish、SPP、SAM、PAN、DIoU-NMS

Experiments

模型的好坏最终还是要通过实验来验证,直接上对比表:

更多的消融实验分析如下:

各位小伙伴还是赶紧去研究一下原文吧,在极市平台后台回复YOLOv4即可获取论文下载链接。


-END -

推荐阅读:


加入极市原创作者行列
丰富稿酬|个人品牌打造|资源引荐


添加极市小助手微信 (ID : cv-mart) ,备注: 研究方向-姓名-学校/公司-城市 (如:目标检测-小极-北大-深圳),即可申请加入 目标检测、目标跟踪、人脸、工业检测、医学影像、三维&SLAM、图像分割等极市技术交流群 ,更有 每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、 干货资讯汇总、行业技术交流 一起来让思想之光照的更远吧~


△长按添加极市小助手


△长按关注极市平台,获取最新CV干货


觉得有用麻烦给个在看啦~  

登录查看更多
0

相关内容

专知会员服务
31+阅读 · 2020年4月24日
专知会员服务
109+阅读 · 2020年3月12日
模型压缩究竟在做什么?我们真的需要模型压缩么?
专知会员服务
27+阅读 · 2020年1月16日
目标检测中边界框的回归策略
极市平台
17+阅读 · 2019年9月8日
CenterNet:目标即点(代码已开源)
极市平台
25+阅读 · 2019年5月24日
重磅!MobileNetV3 来了!
极市平台
18+阅读 · 2019年5月8日
三分支网络——目前目标检测性能最佳网络框架
人工智能前沿讲习班
6+阅读 · 2019年3月5日
目标检测论文阅读:DetNet
极市平台
9+阅读 · 2019年1月28日
FaceBoxes—官方开源CPU实时高精度人脸检测器
极市平台
11+阅读 · 2019年1月18日
哇~这么Deep且又轻量的Network,实时目标检测
计算机视觉战队
7+阅读 · 2018年8月15日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Neural Response Generation with Meta-Words
Arxiv
6+阅读 · 2019年6月14日
Arxiv
7+阅读 · 2018年12月10日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关资讯
目标检测中边界框的回归策略
极市平台
17+阅读 · 2019年9月8日
CenterNet:目标即点(代码已开源)
极市平台
25+阅读 · 2019年5月24日
重磅!MobileNetV3 来了!
极市平台
18+阅读 · 2019年5月8日
三分支网络——目前目标检测性能最佳网络框架
人工智能前沿讲习班
6+阅读 · 2019年3月5日
目标检测论文阅读:DetNet
极市平台
9+阅读 · 2019年1月28日
FaceBoxes—官方开源CPU实时高精度人脸检测器
极市平台
11+阅读 · 2019年1月18日
哇~这么Deep且又轻量的Network,实时目标检测
计算机视觉战队
7+阅读 · 2018年8月15日
Top
微信扫码咨询专知VIP会员