用多模态信息做 prompt,解锁 GPT 新玩法

2021 年 10 月 18 日 夕小瑶的卖萌屋

文 | 子龙
编 | 小轶

自多模态大火以来,井喷式地出现了许多工作,通过改造预训练语言模型,用图像信息来增强语义信息,但主要集中在几个 NLU 任务上,在 NLG 上的研究比较少。

今天要介绍的这篇 paper Multimodal Conditionality for Natural Language Generation 研究的任务场景则是以多模态信息作为条件做 conditional 的 NLG任务。这种任务设置有许多实际的应用场景。比如,生成商品介绍文案时,仅仅基于该商品的文字标题是不够的。如果能结合商品的图片,必然能够得到更贴切的文案。

这篇工作的模型基于 GPT2,而多模态信息则是以一种类似 prompt 的方式来使用。虽然方法比较简单直观,但具备一定通用性,未来或许有进一步挖掘的可能。

论文题目:
Multimodal Conditionality for Natural Language Generation

论文链接:
https://arxiv.org/pdf/2109.01229.pdf

原理

作者的想法其实十分简单,一切语言模型都是为了衡量一段文字序列的概率,即:

而如果引入了多模态的输入,就相当于在生成时多了一个条件,即条件概率为:

其中 为多模态输入序列。

以文中生成商品文案的运用场景为例:

这里的Product Title和Product Images就是作为生成Product Description时的“条件”。

那么如何将多模态序列引入到自然语言生成模型呢?

本文使用了一个十分直观的方法,称作MANTIS,将作为条件的多模态序列作为前缀放置到decoder输入序列的前面,进而中解码过程中分享多模态信息。其中图片输入借助ResNet-152,将最后一层输出用线性层映射到语言模型同一个空间中。而作为条件的文本输入,即这里的product title,和生成序列一同进行编码。

效果

数据集采用FACAD,提供了商品的标题和图片,目标是生成产品描述,效果如下:

文中提出的模型在所有指标中都取得了最优结果,相比于baseline,将BLEU4提升了0.8,CIDEr提升了7.2,METEOR提升了0.8,ROUGE-L提升了1.0。同时,由于衡量生成文本质量具有主观性,作者也进行了人工评分,结果表明MANTIS依然取得了最优结果。

从生成效果来看,生成的描述成功地结合了图片信息,使得描述更加准确,而非笼统的介绍。

总结

这篇文章方法十分直观,但是结合最近火热的 Prompt,似乎又有了更多的启发。同样是生成,同样是加前缀,似乎给定条件的生成就是加上编码好的前缀?那么多模态未来能不能成为一种新的prompt呢?作者认为他们的模型可以借助各种不同的多模态条件生成,然而不得不说本文的方法对模态融合的部分做的马虎了些。本文只是单纯借助解码器进行融合,并没有在编码阶段就分享跨模态的信息。

萌屋作者:子龙(Ryan)

本科毕业于北大计算机系,曾混迹于商汤和MSRA,现在是宅在UCSD(Social Dead)的在读PhD,主要关注多模态中的NLP和data mining,也在探索更多有意思的Topic,原本只是贵公众号的吃瓜群众,被各种有意思的推送吸引就上了贼船,希望借此沾沾小屋的灵气,paper++,早日成为有猫的程序员!

作品推荐:

1.别再搞纯文本了!多模文档理解更被时代需要!

2.Transformer哪家强?Google爸爸辨优良!

3.预训练语言真的是世界模型?

后台回复关键词【入群

加入卖萌屋NLP/IR/Rec与求职讨论群

后台回复关键词【顶会

获取ACL、CIKM等各大顶会论文集!

登录查看更多
1

相关内容

中科院自动化所徐波团队最新《视觉-语言预训练》综述
专知会员服务
66+阅读 · 2022年2月23日
专知会员服务
18+阅读 · 2021年9月13日
多模态预训练模型简述
专知会员服务
109+阅读 · 2021年4月27日
知识增强的文本生成研究进展
专知会员服务
98+阅读 · 2021年3月6日
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
25+阅读 · 2021年1月29日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
搭配对比学习,万能的 prompt 还能做可控文本生成
夕小瑶的卖萌屋
2+阅读 · 2022年3月17日
我不看好data2vec这类多模态融合的研究
夕小瑶的卖萌屋
0+阅读 · 2022年2月16日
多模态中的Prompt范式:从CLIP、CoOp到CLIP-adapter
PaperWeekly
5+阅读 · 2021年11月3日
格局打开,带你解锁 prompt 的花式用法
夕小瑶的卖萌屋
5+阅读 · 2021年9月14日
论文浅尝 | 利用冻结语言模型的多模态少样本学习
开放知识图谱
0+阅读 · 2021年8月28日
综述:Image Caption 任务之语句多样性
PaperWeekly
22+阅读 · 2018年11月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
3+阅读 · 2022年4月19日
VIP会员
相关VIP内容
中科院自动化所徐波团队最新《视觉-语言预训练》综述
专知会员服务
66+阅读 · 2022年2月23日
专知会员服务
18+阅读 · 2021年9月13日
多模态预训练模型简述
专知会员服务
109+阅读 · 2021年4月27日
知识增强的文本生成研究进展
专知会员服务
98+阅读 · 2021年3月6日
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
25+阅读 · 2021年1月29日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
相关资讯
搭配对比学习,万能的 prompt 还能做可控文本生成
夕小瑶的卖萌屋
2+阅读 · 2022年3月17日
我不看好data2vec这类多模态融合的研究
夕小瑶的卖萌屋
0+阅读 · 2022年2月16日
多模态中的Prompt范式:从CLIP、CoOp到CLIP-adapter
PaperWeekly
5+阅读 · 2021年11月3日
格局打开,带你解锁 prompt 的花式用法
夕小瑶的卖萌屋
5+阅读 · 2021年9月14日
论文浅尝 | 利用冻结语言模型的多模态少样本学习
开放知识图谱
0+阅读 · 2021年8月28日
综述:Image Caption 任务之语句多样性
PaperWeekly
22+阅读 · 2018年11月30日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员