一个模型通杀8大视觉任务,一句话生成图像、视频、P图、视频处理...都能行 | MSRA&北大出品

2021 年 11 月 27 日 量子位
丰色 发自 凹非寺
量子位 报道 | 公众号 QbitAI

有这样一个模型。

它可以做到一句话生成视频

不仅零样本就能搞定,性能还直达SOTA

它的名字,叫“NüWA”(女娲)

“女娲女娲,神通广大”,正如其名,一句话生成视频只是这个模型的技能之一

除此之外,一句话生成图片,草图生成图像、视频,图像补全,视频预测,图像编辑、视频编辑——

一共八种视觉任务,它其实全部都能搞定

完全是一位不折不扣的“全能型选手”。

它,就是由微软亚研院和北大联合打造的一个多模态预训练模型,在首届微软峰会上亮相。

目前,在推特上已“小有热度”。

八项全能“女娲”,单拎出来也不差

所以这个全能型选手究竟表现如何?

直接与SOTA模型对比,来看看“她”在各项任务上的表现。

文本生成图像中,不得不说,即使“女娲”的FID-0得分不及XMC-GAN,但在实际效果中,“女娲”生成的图肉眼可见的更好,清晰又逼真

文本到视频中,“女娲”每一项指标都获得了第一名,从逐帧图片来看,差距很明显。

视频预测中,所有模型使用64x64的分辨率,Cond.代表供预测的帧数。

尽管只有1帧,“女娲”也将FVD得分从94±2降到86.9

草图转图像时,与SOTA模型相比,“女娲”生成的卡车都更逼真。

而在零样本的图像补全任务中,“女娲”拥有更丰富的“想象力”

在零样本的图像编辑任务中,“女娲”明显比SOTA模型的“P图”能力更强

并且,它的另一个优势是推理速度,几乎50秒就可以生成一个图像;而Paint By Word在推理过程中需要额外的训练,大约需要300秒才能收敛。

草图生成视频以及文本引导的视频编辑任务,是本次研究首次提出,目前还没有可比对象。

直接上效果:

看,像上面这些仅用色块勾勒轮廓的视频草图,经“女娲”之手就能生成相应视频。

而输入一段潜水视频,“女娲”也能在文本指导下让潜水员浮出水面、继续下潜,甚至“游”到天上。

可以说,“女娲”不仅技能多,哪个单项拿出来也完全不赖。

如何实现?

这样一个无论操作对象是图像还是视频,无论是合成新的、还是在已有素材上改造都能做到做好的“女娲”,是如何被打造出来的呢?

其实不难,把文字、图像、视频分别看做一维、二维、三维数据,分别对应3个以它们为输入的编码器。

另外预训练好一个处理图像与视频数据的3D解码器。

两者配合就获得了以上各种能力。

其中,对于图像补全、视频预测、图像视频编辑任务,输入的部分图像或视频直接馈送给解码器。

而编码解码器都是基于一个3D Nearby的自注意力机制(3DNA)建立的,该机制可以同时考虑空间和时间轴的上局部特性,定义如下:

W表示可学习的权重,X和C分别代表文本、图像、视频数据的3D表示:

其中,h和w表示空间轴上的token数,s表时间轴上的token数(文本默认为1),d表示每个token的维数。

如果C=X,3DNA表示对目标X的自注意;如果C≠X,3DNA表示对在条件C下目标X的交叉注意。

该机制不仅可以降低模型的计算复杂度,还能提高生成结果的质量

此外,模型还使用VQ-GAN替代VQ-VAE进行视觉tokenization,这也让生成效果好上加好。

团队介绍

一作Chenfei Wu,北京邮电大学博士毕业,现工作于微软亚研院。

共同一作Jian Liang, 来自北京大学。

其余作者包括微软亚研院的高级研究员Lei Ji,首席研究员Fan Yang,合作首席科学家Daxin Jiang,以及北大副教授方跃坚。

通讯作者为微软亚研院的高级研究员&研究经理段楠。

论文地址:
https://arxiv.org/abs/2111.12417

参考链接:
[1]https://www.microsoft.com/en-us/research/video/research-talk-nuwa-neural-visual-world-creation-with-multimodal-pretraining/
[2]
https://www.youtube.com/watch?v=jhmJ5qb-JAU
[3]
https://twitter.com/ak92501/status/1463691106416214019


本文系网易新闻•网易号特色内容激励计划签约账号【量子位】原创内容,未经账号授权,禁止随意转载。

直播免费报名!

与AI大咖一起预见智能科技新未来

量子位「MEET2022智能未来大会」将于11.30日全程直播,李开复博士、张亚勤教授、IBM大中华区CTO谢东百度集团副总裁吴甜京东集团副总裁何晓冬商汤科技联创杨帆小冰公司CEO李笛 等嘉宾邀你参会、一起预见智能科技新未来!

扫码可预约直播or加入大会交流群↓↓ 入群还可抽取惊喜礼品&现金红包哦~

<< 左右滑动查看更多 >>


量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

一键三连「分享」「点赞」和「在看」

科技前沿进展日日相见 ~


登录查看更多
0

相关内容

【CVPR2022】高分辨率和多样化的视频-文本预训练模型
专知会员服务
10+阅读 · 2022年3月6日
[ICCV2021]自适应多模态选取框架用于视频理解
专知会员服务
18+阅读 · 2021年10月30日
专知会员服务
19+阅读 · 2021年9月23日
专知会员服务
45+阅读 · 2021年6月1日
【ICML2021】来自观察的跨域模仿
专知会员服务
18+阅读 · 2021年5月25日
专知会员服务
70+阅读 · 2021年3月29日
专知会员服务
66+阅读 · 2021年3月21日
专知会员服务
36+阅读 · 2021年2月20日
谷歌提出MaskGIT:掩码生成图像Transformer
CVer
2+阅读 · 2022年3月21日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
3+阅读 · 2022年4月19日
Improving GAN Equilibrium by Raising Spatial Awareness
Arxiv
17+阅读 · 2021年3月29日
VIP会员
相关VIP内容
【CVPR2022】高分辨率和多样化的视频-文本预训练模型
专知会员服务
10+阅读 · 2022年3月6日
[ICCV2021]自适应多模态选取框架用于视频理解
专知会员服务
18+阅读 · 2021年10月30日
专知会员服务
19+阅读 · 2021年9月23日
专知会员服务
45+阅读 · 2021年6月1日
【ICML2021】来自观察的跨域模仿
专知会员服务
18+阅读 · 2021年5月25日
专知会员服务
70+阅读 · 2021年3月29日
专知会员服务
66+阅读 · 2021年3月21日
专知会员服务
36+阅读 · 2021年2月20日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员