Meta AI推出“杂食者”:一个模型搞定图像、视频和3D数据三大分类任务,性能还不输独立模型

2022 年 1 月 24 日 量子位
丰色 发自 凹非寺
量子位 | 公众号 QbitAI

最近,Meta AI推出了这样一个“杂食者” (Omnivore)模型,可以对不同视觉模态的数据进行分类,包括图像、视频和3D数据

比如面对最左边的图像,它可以从深度图、单视觉3D图和视频数据集中搜集出与之最匹配的结果。

这在之前,都要分用不同的模型来实现;现在一个模型就搞定了

而且Omnivore易于训练,使用现成的标准数据集,就能让其性能达到与对应单模型相当甚至更高的水平。

实验结果显示,Omnivore在图像分类数据集ImageNet上能达到86.0%的精度,在用于动作识别的Kinetics数据集上能达84.1%,在用于单视图3D场景分类的SUN RGB-D也获得了67.1%

另外,Omnivore在实现一切跨模态识别时,都无需访问模态之间的对应关系。

不同视觉模态都能通吃的“杂食者”

Omnivore基于Transformer体系结构,具备该架构特有的灵活性,并针对不同模态的分类任务进行联合训练。

模型架构如下:

Omnivore会将输入的图像、视频和单视图3D图像转换为embedding,并馈送到Transformer中。

虽然它可以使用任何vision transformer架构来处理patch embedding,但鉴于Swin transformer在图像和视频任务上的强大性能,这里就使用该架构作为基础模型。

具体来说,Omnivore将图像转为patch,视频转为时空tube(spatio-temporal tube),单视图3D图像转为RGB patch和深度patch。

然后使用线性层将patches映射到到embedding中。其中对RGB patch使用同一线性层,对深度patch使用单独的。

总的来说,就是通过embedding将所有视觉模式转换为通用格式,然后使用一系列时空注意力(attention)操作来构建不同视觉模式的统一表示。

研究人员在ImageNet-1K数据集、Kinetics-400数据集和SUN RGB-D数据集上联合训练出各种Omnivore模型。

这种方法类似于多任务学习和跨模态对齐,但有2点重要区别:

1、不假设输入观测值对齐(即不假设图像、视频和3D数据之间的对应关系)

2、也不假设这些数据集共享相同的标签空间(label space)

性能超SOTA

实验方面,首先将Omnivore与各视觉模态对应的特定模型(下表中指Specific)进行比较。

一共有三种不同的模型尺寸:T、S和B。

预训练模型在七个下游任务上都进行了微调。

图像特定模型在IN1K上预训练。视频特定模型和单视图3D特定模型均使用预训练图像特定模型的inflation进行初始化,并分别在K400和SUN RGB-D上进行微调。

结果发现,Omnivore在几乎所有的下游任务上的性能都相当于或优于各特定模型。

其中尺寸最大的Swin-B实现了全部任务上的SOTA。

将Omnivore与具有相同模型架构和参数数量的特定模型比较也是相同的结果。

其中Omnivore在IN1K、K400和SUN数据集上从头开始联合训练,而特定模态的模型针对每个数据集专门训练:

ImageSwin模型从零开始训练,VideoSwin和DepthSwin模型则从ImageSwin模型上进行微调。

接下来将Omnivore与图像、视频和3D数据分类任务上的SOTA模型进行比较。

结果仍然不错,Omnivore在所有预训练任务中都表现出了优于SOTA模型的性能(下图从上至下分别为图像、视频和3D数据)

此外,在ImageNet-1K数据集上检索给定RGB图像的深度图也发现,尽管Omnivore没有接受过关于1K深度图的训练,但它也能够给出语义相似的正确答案。

最后,作者表示,尽管这个“杂食者”比传统的特定模式模型有了很多进步,但它有一些局限性。

比如目前它仅适用于单视图3D图像,不适用于其他3D表示,如体素图(voxels)、点云图等。

论文地址:
https://arxiv.org/abs/2201.08377

代码已开源:

https://github.com/facebookresearch/omnivore

「智能汽车」交流群招募中!

欢迎关注智能汽车、自动驾驶的小伙伴们加入社群,与行业大咖交流、切磋,不错过智能汽车行业发展&技术进展。

ps.加好友请务必备注您的姓名-公司-职位哦~


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~


登录查看更多
0

相关内容

Transformer如何用于视频?最新「视频Transformer」2022综述
专知会员服务
75+阅读 · 2022年1月20日
专知会员服务
44+阅读 · 2021年6月1日
专知会员服务
25+阅读 · 2021年5月23日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
36+阅读 · 2021年4月16日
专知会员服务
44+阅读 · 2021年1月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
3+阅读 · 2022年4月19日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员