反向传播可以解释大脑学习吗?近日 Hinton 等人的研究认为,尽管大脑可能未实现字面形式的反向传播,但是反向传播的部分特征与理解大脑中的学习具备很强的关联性。该研究将之前的相关研究置于「NGRAD」框架下,NGRAD 算法利用活动状态的差异驱动突触更新,这与反向传播类似。
尽管如此,神经科学的最新发展和神经网络的成功激活了人们对反向传播能否帮助进一步了解皮层学习的兴趣。反向传播算法使用反向连接(feedback connection)传递误差信号,来计算突触更新,从而实现快速学习。尽管反向连接在皮层中无处不在,但我们很难观察到它们是如何传递反向传播所需误差信号的。
学习不能只是对局部突触特定事件的盲目累积,也不能不考虑下游行为后果。因此,想要了解大脑中的学习过程,就必须揭示在整个网络中协调可塑性的原则。
在机器学习领域中,研究人员探索协调突触更新的方法,以提高神经网络的性能,同时不受生物现实情况的限制。
他们首先定义了神经网络的整体架构,包括大量神经元及其连接方式。例如,研究人员经常使用包含多层神经元的深层网络,因为研究证明这些架构对于多项任务都非常有效。
反向传播通过反向连接发送的误差信号来调整突触,该经典方法已在监督学习设置中有详细描述。
然而,大脑似乎将反向连接用于不同目的,而且主要以无监督的方式进行学习,为原始感官输入中的隐式表征构建显式结构从而建立表征。那么,我们很自然地就会想到这个问题:反向传播算法是否可以帮助我们了解更多有关大脑学习的信息?
该研究认为,尽管存在明显的差异,但大脑仍有能力实现反向传播的核心原则。其主要思想是,大脑可以通过使用反向连接来引发神经元活动从而计算有效的突触更新,而这些神经元活动将局部计算出的差异编码成类似于反向传播的误差信号。
该研究将一组看似完全不同的学习算法放入该框架中——neural gradient representation by activity differences(NGRAD)。
该研究表明,相比匹配灵长目动物视觉皮层腹侧流中表征的其他模型,使用反向传播训练得到的多层分类模型性能更好(参见下图 2)。
反向传播自身的问题
尽管越多越多的证据表明使用反向传播训练的多层网络有助于解释神经数据,但关于如何在皮层中实现类反向传播的学习还有很多难题。下列公式 1 表示反向传播中的突触更新:
基于该公式,该研究指出了在生物回路中实现反向传播的三个主要难题。
反向传播要求前向和后向路径具备突触对称性
反向传播的朴素实现要求通过反向连接传播误差信号,而反向连接的强度必须与前向连接一致。从上文公式 1 中可以看到,误差 δ_l+1 沿着后向权重 W^⊤_l+1 移动,该后向权重与前向权重是对称的。
在计算机上,反向传播算法利用一组与前向传播所用活动变量完全不同的 error derivative 变量,向后传播误差信息。而将反向传播引入大脑中后,大脑中的误差信息可以通过不同的「误差传播网络」(error delivery network)进行传播,该反向网络的每一个神经元均携带前向网络中对应神经元的更新信息。
反向传播中的误差信号可能出现极值情况
在反向传播中,通过网络向后传播用于告知更新的信息通常以 signed 误差信号 δ 的形式进行传输。在训练过程中,误差信号常常发生多个数量级的变化,即梯度爆炸和梯度消失问题。
尽管有证据表明单层结构(如小脑)中存在 signed 误差传播,但深层网络(如大脑皮层)中 signed 误差的反馈存在很多问题。
大脑中的反向连接改变了神经活动
在误差反向传播中,反向连接发送的误差信号不会影响前向传播生成神经元的活动状态。但是通过 δ 传播的信息仅对突触更新造成影响。因此,大脑中反向连接的作用发生本质变化。例如在皮层中,反向连接影响前向传播生成的神经活动,而这些活动用于执行多个功能。又例如,通过反向连接执行自上而下的控制与增益控制(gain control)有一定关联,即神经响应的增强或抑制取决于对视场中特定特征的关注。
有趣的是,大脑皮层中的反向连接还可以驱动活动,而不只是调整或激活活动。
NGRAD 假设
利用神经活动差异来编码误差
研究者将利用活动状态差异来驱动突触变化的学习机制称为 NGRAD,而皮层利用 NGRAD 机制来执行对梯度下降近似的想法被称为 NGRAD 假设。该假设的主要魅力在于,它不再需要传播两种类型截然不同的参数:活动和 error derivative。
相反,NGRAD 机制基于这样一种 idea,即来自一个目标、另一种形态或更大空间或时间背景的较高级活动,可以推动较低级活动得到与较高级活动或期望输出更一致的值。然后,较低级活动中出现的变化可以仅使用局部可用信号来计算反向传播的权重更新。因此,其核心理念是自上而下驱动(top-down-driven)的活动可以在层间不出现明显误差信息的情况下驱动学习。
目标传播
目标传播是深度学习中使用一系列自编码器的基础理念,下图 3a 展示了目标传播的流程图:
图 3:目标传播算法。a)在每一层使用完美反函数 g_l=f_l^-1(.) 的目标传播原理图;b)差异目标传播有助于纠正反向连接或许无法实现完美反函数的事实;c)单层差异目标传播原理图。前向突触权重的更新旨在促使 forward-pass 隐藏活动更接近修正后的隐藏目标。
差异目标传播
上文中描述的目标传播使用完美的自编码器将目标传达至较早出现的层。这个约束是不切实际的,但可以通过训练后向权重来修复。在前向传递过程中,研究者力图基于后续层中的活动来重建神经活动:̂ h= g_l+1(h_l+1)(如图 3b 中浅紫色箭头所示)
此学习过程称为差异目标传播(difference target propagation,DTP),并在图 3b 和 c 中与逐层权重更新一起显示。
实现
大脑如何近似反向传播,现有的 NGRAD 或许能提供高级见解,但是关于如何在神经组织中实现这种算法仍有许多疑问。
为了在神经回路中发挥作用,NGRAD 必须具备以下能力:协调前向和反向路径之间的交互、计算神经活动模式之间的差异以及利用这一差异进行适当的突触更新。
当前,尚不清楚生物回路如何支持这些操作,但最近的实证研究提出了针对这些实现所需的一组潜在解决方案(下图 4)。
图 4:大脑如何近似反向传播算法,近期的实证研究提供了新思路。
本文来源:机器之心,转载已获授权
近期精彩集锦(点击蓝色字体跳转阅读):
公众号对话框回复“2020科技趋势”,获取《2020科技趋势报告》完整版PDF!
公众号对话框回复“AI女神”,获取《人工智能全球最具影响力女性学者报告》完整版!
公众号对话框回复“AI10”,获取《浅谈人工智能下一个十年》主题演讲PPT!
公众号对话框回复“GNN”,获取《图神经网络及认知推理》主题演讲PPT!
公众号对话框回复“AI指数”,获取《2019人工智能指数报告》完整版PDF!
公众号对话框回复“3D视觉”,获取《3D视觉技术白皮书》完整版PDF!
点击阅读原文,查看更多精彩!