在当今日益互联的世界,图挖掘在许多现实世界的应用领域发挥着关键作用,包括社交网络分析、建议、营销和金融安全。人们作出了巨大的努力来发展广泛的计算模型。然而,最近的研究表明,许多被广泛应用的图挖掘模型可能会受到潜在的歧视。图挖掘的公平性旨在制定策略以减少挖掘过程中引入或放大的偏差。在图挖掘中加强公平性的独特挑战包括: (1)图数据的非iid性质的理论挑战,这可能会使许多现有研究背后的公平机器学习的基本假设无效,(2) 算法挑战平衡模型准确性和公平性的困境。本教程旨在(1)全面回顾图挖掘方面最先进的技术,(2)确定有待解决的挑战和未来的趋势。特别是,我们首先回顾了背景、问题定义、独特的挑战和相关问题;然后,我们将重点深入概述(1)在图挖掘背景下实施群体公平、个人公平和其他公平概念的最新技术,以及(2)图上算法公平的未来研究方向。我们相信,本教程对数据挖掘、人工智能、社会科学等领域的研究人员和实践者具有吸引力,并对现实世界的众多应用领域有益。
http://jiank2.web.illinois.edu/tutorial/cikm21/fair_graph_mining.html
目录内容:
引言 Introduction
Background and motivations
Problem definitions and settings
Key challenges
Related problems
群组公平性 Part I: Group Fairness on Graphs
Fair graph ranking
Fair graph clustering
Fair graph embedding
个体公平性 Part II: Individual Fairness on Graphs
Optimization-based method
Ranking-based method
Part III: Other Fairness Definitions on Graphs
Rawlsian fairness
Degree-related fairness
Counterfactual fairness
开放挑战与未来方向 Part IV: Open Challenges and Future Directions
Fairness on dynamic graphs
Fairness on multi-network mining
Multi-resolution fairness on graphs
Connections between group fairness and individual fairness on graphs
讲者:
参考文献:
Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. In Proceedings of the Web Conference 2021 (pp. 3815-3826).
Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J. (2019). Guarantees for Spectral Clustering with Fairness Constraints. In International Conference on Machine Learning (pp. 3458-3467).
Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. In International Conference on Machine Learning (pp. 715-724).
Rahman, T., Surma, B., Backes, M., & Zhang, Y. (2019). Fairwalk: Towards Fair Graph Embedding. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (pp. 3289-3295).
Buyl, M., & De Bie, T. (2020, November). DeBayes: A Bayesian Method for Debiasing Network Embeddings. In International Conference on Machine Learning (pp. 1220-1229).
Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 379-389).
Dong, Y., Kang, J., Tong, H., & Li, J. (2021). Individual Fairness for Graph Neural Networks: A Ranking based Approach. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 300-310).
Rahmattalabi, A., Vayanos, P., Fulginiti, A., Rice, E., Wilder, B., Yadav, A., & Tambe, M. (2019). Exploring Algorithmic Fairness in Robust Graph Covering Problems. In Advances in Neural Information Processing Systems, (pp. 15776-15787).
Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-Related Biases in Graph Convolutional Networks. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 1435-1444).
Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. In Proceedings of the 37th Conference on Uncertainty in Artificial Intelligence.