作为今年上半年表现最为亮眼的人工智能顶会,ICLR 2019于5月6日至9日在美国新奥尔良举行。本届投稿比去年增长了近60%,共收到1591篇,录取率为31.7%。8个邀请演讲主题:
Cynthia Dwork:算法公平性的进展
Leon Bottou:Learning Representations Using Causal Invariance
Emily Shuckburgh:机器学习能否有助于地球健康的检查
Ian Goodfellow:对抗机器学习
Pierre-Yves Oudeyer:发展自主学习:人工智能,认知科学和教育技术
Zeynep Tufekci:虽然我们都担心机器学习的失败,但如果它成功了,潜伏着什么危险?
Mirella Lapata:用神经模型学习自然语言界面
Noah Goodman:在上下文中学习语言
下面为大家带来一份55页的ICLR 2019会议的Highlights笔记,由布朗大学博士四年级学生David Abel总结整理,通篇干货。这份笔记共分为3个部分,首先简单介绍了大会的亮点;接着介绍了第一天的算法公平性演讲和一些Workshop;后面主会部分提炼了部分演讲和会谈的亮点。
完整笔记下载:
https://david-abel.github.io/notes/iclr_2019.pdf
推荐阅读