超干货!一位博士生80篇机器学习相关论文及笔记下载

2019 年 12 月 4 日 新智元




  新智元报道  

来源:GitHub

编辑:元子

【新智元导读】博士生论文阅读笔记,涵盖深度学习、CV和NLP。作为一名博士生,作者读了很多论文,有时会用一个简单的模板进行简短总结,以更好地理解并更清楚论文的贡献。作者将笔记存放在GitHub里,供大家参考。新智元AI朋友圈 和AI大咖们一起讨论吧。


好像很多人都觉得读论文做笔记是一件非常正确、重要、且必要的事情。 你可能没少看有关《为什么习惯记笔记的人更容易成功》《学霸的笔记都是这么做的,难怪他们的考试分数那么高! 》等文章。


论文笔记的作用不仅仅是起到一种心理安慰,更重要的是划出重点、标记出知识盲区,便于后续温习。 德国心理学家艾宾浩斯研究发现,人类在学习后就会开始遗忘,遗忘的程度是不均匀的,刚开始记忆下降比例很高,后面会越来越少。


根据实验结果发现刚记住的时候是100%,过了20分钟记忆程度只有58.2%,2天和6天后分别只能记得27.8%和25.4%。


如果只是单纯的看论文,很难将里面的知识点据为己有,这个时候就需要笔记来帮忙来延缓知识的流失速度了。


我们经常看到网上动不动就最全XX论文全集,上来就是几十篇论文。 人类都有囤积物资的欲求,囤积论文也差不多。 我们往往觉得,我手中的论文数量越多,带给我的安全感就越大、我能收获的知识就越多。 虽然理智告诉我们: 这样想法是错误的! 然而欲望却拖着我们像个过冬的松鼠一样,不断的收集松果。


但如果硬是强迫自己看一篇论文就必须要做多少多少笔记,也不太现实。 而且如果一开始没有培养期做笔记习惯的话,很可能一开始并没有get到做笔记的精髓,导致事无巨细全都记笔记。 这个时候,看看别人做的笔记,尤其是看看学霸做的笔记,也是一个非常不错、极具实操性的方法。


今天新智元为大家带来一位博士生的论文笔记。 这位学霸真的是有很认真的看了不少论文,为了便于检索,他在看过的ML相关的论文进行了注释和简短摘要,并且将这些摘要按主题分类。


他将论文和笔记都放在了GitHub上,非常方便进行对照。 以下就是论文和笔记的列表,大家可以根据需要下载阅读。


Self-Supervised Learning

论文标题: Selfie: Self-supervised Pretraining for Image Embedding (2019)
论文链接:
https://arxiv.org/abs/1906.02940
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/76_selfie_pretraining_for_img_embeddings.pdf


论文标题: Self-Supervised Representation Learning by Rotation Feature Decoupling (2019)
论文链接:
https://github.com/philiptheother/FeatureDecoupling
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/73_SSL_by_rotation_decoupling.pdf


论文标题: Revisiting Self-Supervised Visual Representation Learning (2019)
论文链接:
https://arxiv.org/abs/1901.09005
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/72_revisiting_SSL.pdf


论文标题: AET vs. AED: Unsupervised Representation Learning by Auto-Encoding Transformations rather than Data (2019)
论文链接:
https://arxiv.org/abs/1901.04596
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/74_AFT_vs_AED.pdf


论文标题: Boosting Self-Supervised Learning via Knowledge Transfer (2018)
论文链接:
https://arxiv.org/abs/1805.00385
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/67_boosting_self_super_via_trsf_learning.pdf


论文标题: Self-Supervised Feature Learning by Learning to Spot Artifacts (2018)
论文链接:
https://arxiv.org/abs/1806.05024
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/69_SSL_by_learn_to_spot_artifacts.pdf


论文标题: Unsupervised Representation Learning by Predicting Image Rotations (2018)
论文链接:
https://arxiv.org/abs/1803.07728
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/68_unsup_img_rep_learn_by_rot_predic.pdf


论文标题: Cross Pixel Optical-Flow Similarity for Self-Supervised Learning (2018)
论文链接:
https://arxiv.org/abs/1807.05636
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/75_cross_pixel_optical_flow.pdf


论文标题: Multi-task Self-Supervised Visual Learning (2017)
论文链接:
https://arxiv.org/abs/1708.07860
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/64_multi_task_self_supervised.pdf


论文标题: Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction (2017)
论文链接:
https://arxiv.org/abs/1611.09842
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/65_split_brain_autoencoders.pdf


论文标题: Colorization as a Proxy Task for Visual Understanding (2017)
论文链接:
https://arxiv.org/abs/1703.04044
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/66_colorization_as_a_proxy_for_viz_under.pdf


论文标题: Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles (2017)
论文链接:
https://arxiv.org/abs/1603.09246
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/63_solving_jigsaw_puzzles.pdf


论文标题: Unsupervised Visual Representation Learning by Context Prediction (2016)
论文链接:
https://arxiv.org/abs/1505.05192
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/62_unsupervised_learning_with_context_prediction.pdf


论文标题: Colorful image colorization (2016)
论文链接:
https://richzhang.github.io/colorization/
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/59_colorful_colorization.pdf


论文标题: Learning visual groups from co-occurrences in space and time (2015)
论文链接:
https://arxiv.org/abs/1511.06811
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/61_visual_groups_from_co_occurrences.pdf


论文标题: Discriminative unsupervised feature learning with exemplar convolutional neural networks (2015)
论文链接:
https://arxiv.org/abs/1406.6909
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/60_exemplar_CNNs.pdf


Semi-Supervised Learning


论文标题: Dual Student: Breaking the Limits of the Teacher in Semi-supervised Learning (2019)
论文链接:
https://arxiv.org/abs/1909.01804
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/79_dual_student.pdf


论文标题: S4L: Self-Supervised Semi-Supervised Learning (2019)
论文链接:
https://arxiv.org/abs/1905.03670
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/83_S4L.pdf


论文标题: Semi-Supervised Learning by Augmented Distribution Alignment (2019)
论文链接:
https://arxiv.org/abs/1905.08171
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/80_SSL_aug_dist_align.pdf


论文标题: MixMatch: A Holistic Approach toSemi-Supervised Learning (2019)
论文链接:
https://arxiv.org/abs/1905.02249
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/45_mixmatch.pdf


论文标题: Unsupervised Data Augmentation (2019)
论文链接:
https://arxiv.org/abs/1904.12848
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/39_unsupervised_data_aug.pdf


论文标题: Interpolation Consistency Training forSemi-Supervised Learning (2019)
论文链接:
https://arxiv.org/abs/1903.03825
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/44_interpolation_consistency_tranining.pdf


论文标题: Deep Co-Training for Semi-Supervised Image Recognition (2018)
论文链接:
https://arxiv.org/abs/1803.05984
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/46_deep_co_training_img_rec.pdf


论文标题: Unifying semi-supervised and robust learning by mixup (2019)
论文链接:
https://openreview.net/forum?id=r1gp1jRN_4
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/42_mixmixup.pdf


论文标题: Realistic Evaluation of Deep Semi-Supervised Learning Algorithms (2018)
论文链接:
https://arxiv.org/abs/1804.09170
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/37_realistic_eval_of_deep_ss.pdf


论文标题: Semi-Supervised Sequence Modeling with Cross-View Training (2018)
论文链接:
https://arxiv.org/abs/1809.08370
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/38_cross_view_semi_supervised.pdf


论文标题: Virtual Adversarial Training:A Regularization Method for Supervised andSemi-Supervised Learning (2017)
论文链接:
https://arxiv.org/abs/1704.03976
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/40_virtual_adversarial_training.pdf


论文标题: Mean teachers are better role models (2017)
论文链接:
https://arxiv.org/abs/1703.01780
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/56_mean_teachers.pdf


论文标题: Temporal Ensembling for Semi-Supervised Learning (2017)
论文链接:
https://arxiv.org/abs/1610.02242
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/55_temporal-ensambling.pdf


论文标题: Semi-Supervised Learning with Ladder Networks (2015)
论文链接:
https://arxiv.org/abs/1507.02672
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/33_ladder_nets.pdf


Unsupervised Learning


论文标题: Invariant Information Clustering for Unsupervised Image Classification and Segmentation (2019)
论文链接:
https://arxiv.org/abs/1807.06653
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/78_IIC.pdf


论文标题: Deep Clustering for Unsupervised Learning of Visual Feature (2018)
论文链接:
https://arxiv.org/abs/1807.05520
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/70_deep_clustering_for_un_visual_features.pdf

Semantic Segmentation


论文标题: DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution (2018)
论文链接:
https://arxiv.org/abs/1802.02611
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/26_deeplabv3+.pdf


论文标题: Large Kernel Matter, Improve Semantic Segmentation by Global Convolutional Network (2017)
论文链接:
https://arxiv.org/abs/1703.02719
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/28_large_kernel_maters.pdf


论文标题: Understanding Convolution for Semantic Segmentation (2018)
论文链接:
https://arxiv.org/abs/1702.08502
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/29_understanding_conv_for_sem_seg.pdf


论文标题: Rethinking Atrous Convolution for Semantic Image Segmentation (2017)
论文链接:
https://arxiv.org/abs/1706.05587
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/25_deeplab_v3.pdf


论文标题: RefineNet: Multi-path refinement networks for high-resolution semantic segmentation (2017)
论文链接:
https://arxiv.org/abs/1611.06612
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/31_refinenet.pdf


论文标题: Pyramid Scene Parsing Network (2017)
论文链接:
http://jiaya.me/papers/PSPNet_cvpr17.pdf
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/22_pspnet.pdf


论文标题: SegNet: A Deep ConvolutionalEncoder-Decoder Architecture for ImageSegmentation (2016)
论文链接:
https://arxiv.org/pdf/1511.00561
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/21_segnet.pdf


论文标题: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation (2016)
论文链接:
https://arxiv.org/abs/1606.02147
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/27_enet.pdf


论文标题: Attention to Scale: Scale-aware Semantic Image Segmentation (2016)
论文链接:
https://arxiv.org/abs/1511.03339
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/30_atttention_to_scale.pdf


论文标题: Deeplab: semantic image segmentation with DCNN, atrous convs and CRFs (2016)
论文链接:
https://arxiv.org/abs/1606.00915
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/23_deeplab_v2.pdf


论文标题: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015)
论文链接:
https://arxiv.org/abs/1505.04597
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/20_Unet.pdf


论文标题: Fully Convolutional Networks for Semantic Segmentation (2015)
论文链接:
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/19_FCN.pdf


论文标题: Hypercolumns for object segmentation and fine-grained localization (2015)
论文链接:
http://home.bharathh.info/pubs/pdfs/BharathCVPR2015.pdf
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/24_hypercolumns.pdf


Weakly

论文标题: Box-driven Class-wise Region Masking and Filling Rate Guided Loss for Weakly Supervised Semantic Segmentation (2019)
论文链接:
http://arxiv.org/abs/1904.11693
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/54_boxe_driven_weakly_segmentation.pdf


论文标题: FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stochastic Inference (2019)
论文链接:
https://arxiv.org/abs/1902.10421
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/49_ficklenet.pdf


论文标题: Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (2018)
论文链接:
http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_Weakly-Supervised_Semantic_Segmentation_CVPR_2018_paper.pdf
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/53_deep_seeded_region_growing.pdf


论文标题: Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation (2018)
论文链接:
https://arxiv.org/abs/1803.10464
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/81_affinity_for_ws_segmentation.pdf


论文标题: Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach (2018)
论文链接:
https://arxiv.org/abs/1703.08448
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/51_object_region_manning_for_sem_seg.pdf


论文标题: Revisiting Dilated Convolution: A Simple Approach for Weakly
论文标题: and Semi
论文标题: Supervised Semantic Segmentation (2018)
论文链接:
https://arxiv.org/abs/1805.04574
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/52_dilates_convolution_semi_super_segmentation.pdf


论文标题: Tell Me Where to Look: Guided Attention Inference Network (2018)
论文链接:
https://arxiv.org/abs/1802.10171
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/50_tell_me_where_to_look.pdf


论文标题: Semi Supervised Semantic Segmentation Using Generative Adversarial Network (2017)
论文链接:
https://arxiv.org/abs/1703.09695
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/82_ss_segmentation_gans.pdf


论文标题: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation (2015)
论文链接:
https://arxiv.org/abs/1506.04924
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/47_decoupled_nn_for_segmentation.pdf


论文标题: Weakly
论文标题: and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation (2015)
论文链接:
https://arxiv.org/abs/1502.02734
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/48_weakly_and_ss_for_segmentation.pdf


Information Retrieval


论文标题: VSE++: Improving Visual-Semantic Embeddings with Hard Negatives (2018)
论文链接:
https://arxiv.org/abs/1707.05612
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/77_vse++.pdf

Visual Explanation & Attention



论文标题: Attention Branch Network: Learning of Attention Mechanism for Visual Explanation (2019)
论文链接:
https://arxiv.org/abs/1812.10025
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/57_attention_branch_netwrok.pdf


论文标题: Attention-based Dropout Layer for Weakly Supervised Object Localization (2019)
论文链接:
http://openaccess.thecvf.com/content_CVPR_2019/papers/Choe_Attention-Based_Dropout_Layer_for_Weakly_Supervised_Object_Localization_CVPR_2019_paper.pdf
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/58_attention_based_dropout.pdf


论文标题: Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer (2016)
论文链接:
https://arxiv.org/abs/1612.03928
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/71_attention_transfer.pdf


Graph neural network & Graph embeddings


论文标题: Pixels to Graphs by Associative Embedding (2017)
论文链接:
https://arxiv.org/abs/1706.07365
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/36_pixels_to_graphs.pdf


论文标题: Associative Embedding: End-to-End Learning forJoint Detection and Grouping (2017)
论文链接:
https://arxiv.org/abs/1611.05424
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/35_associative_emb.pdf


论文标题: Interaction Networks for Learning about Objects , Relations and Physics (2016)
论文链接:
https://arxiv.org/abs/1612.00222
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/18_interaction_nets.pdf


论文标题: DeepWalk: Online Learning of Social Representation (2014)
论文链接:
http://www.perozzi.net/publications/14_kdd_deepwalk.pdf
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/deep_walk.pdf


论文标题: The graph neural network model (2009)
论文链接:
https://persagen.com/files/misc/scarselli2009graph.pdf
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/graph_neural_nets.pdf


Regularization

论文标题: Manifold Mixup: Better Representations by Interpolating Hidden States (2018)
论文链接:
https://arxiv.org/abs/1806.05236
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/43_manifold_mixup.pdf


Deep learning Methods & Models

论文标题: AutoAugment (2018)
论文链接:
https://arxiv.org/abs/1805.09501
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/41_autoaugment.pdf


论文标题: Stacked Hourgloass (2017)
论文链接:
http://ismir2018.ircam.fr/doc/pdfs/138_Paper.pdf
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/34_stacked_hourglass.pdf



Document analysis and segmentation


论文标题: dhSegment: A generic deep-learning approach for document segmentation (2018)
论文链接:
https://arxiv.org/abs/1804.10371
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/dhSegement.pdf


论文标题: Learning to extract semantic structure from documents using multimodal fully convolutional neural networks (2017)
论文链接:
https://arxiv.org/abs/1706.02337
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/learning_to_extract.pdf


论文标题: Page Segmentation for Historical Handwritten Document Images Using Conditional Random Fields (2016)
论文链接:
https://www.researchgate.net/publication/312486501_Page_Segmentation_for_Historical_Handwritten_Document_Images_Using_Conditional_Random_Fields
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/seg_with_CRFs.pdf


论文标题: ICDAR 2015 competition on text line detection in historical documents (2015)
论文链接:
http://ieeexplore.ieee.org/abstract/document/7333945/
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/ICDAR2015.pdf


论文标题: Handwritten text line segmentation using Fully Convolutional Network (2017)
论文链接:
https://ieeexplore.ieee.org/document/8270267/
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/handwritten_text_seg_FCN.pdf


论文标题: Deep Neural Networks for Large Vocabulary Handwritten Text Recognition (2015)
论文链接:
https://tel.archives-ouvertes.fr/tel-01249405/document
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/andwriten_text_recognition.pdf


论文标题: Page Segmentation of Historical Document Images with Convolutional Autoencoders (2015)
论文链接:
https://ieeexplore.ieee.org/abstract/document/7333914/
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/segmentation_with_CAE.pdf


论文标题: A typed and handwritten text block segmentation system for heterogeneous and complex documents (2012)
论文链接:
https://www.researchgate.net/publication/275518176_A_Typed_and_Handwritten_Text_Block_Segmentation_System_for_Heterogeneous_and_Complex_Documents
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/a_typed_block_seg.pdf


论文标题: Document layout analysis, Classical approaches (1992:2001)
论文链接:
https://pdfs.semanticscholar.org/5392/90b571b918da959fabaae7f605bb07850518.pdf
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/old_classical_approaches.pdf


论文标题: Page Segmentation for Historical Document Images Based on Superpixel Classification with Unsupervised Feature Learning (2016)
论文链接:
https://ieeexplore.ieee.org/document/7490134
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/seg_with_superpixels.pdf


论文标题: Paragraph text segmentation into lines with Recurrent Neural Networks (2015)
论文链接:
http://ieeexplore.ieee.org/abstract/document/7333803/
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/textlines_srg_with_RNNs.pdf


论文标题: A comprehensive survey of mostly textual document segmentation algorithms since 2008 (2017 )
论文链接:
https://hal.archives-ouvertes.fr/hal-01388088/document
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/survey_doc_segmentation.pdf


论文标题: Convolutional Neural Networks for Page Segmentation of Historical Document Images (2017)
论文链接:
https://arxiv.org/abs/1704.01474
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/CNNs_chen.pdf


论文标题: ICDAR2009 Page Segmentation Competition (2009)
论文链接:
https://ieeexplore.ieee.org/document/5277763
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/ICDAR2009.pdf


论文标题: Amethod for combining complementary techniques for document image segmentation (2009)
论文链接:
https://www.researchgate.net/publication/220600948_A_method_for_combining_complementary_techniques_for_document_image_segmentation
笔记链接:
https://github.com/yassouali/ML_paper_notes/blob/master/notes/a_method_for_combining_complementary_techniques.pdf

完整列表:
https://github.com/yassouali/ML_paper_notes


登录查看更多
11

相关内容

专知会员服务
145+阅读 · 2020年6月15日
还在修改博士论文?这份《博士论文写作技巧》为你指南
【纽约大学】最新《离散数学》笔记,451页pdf
专知会员服务
128+阅读 · 2020年5月26日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【电子书】让 PM 全面理解深度学习 65页PDF免费下载
专知会员服务
17+阅读 · 2019年10月30日
干货 | 可解释的机器学习
AI科技评论
20+阅读 · 2019年7月3日
ICML 2019必看!87页超强干货博士笔记总结
新智元
35+阅读 · 2019年6月17日
Reddit最火!55页博士笔记总结ICLR 2019大会干货
新智元
29+阅读 · 2019年5月11日
深度学习之路——论文阅读
专知
11+阅读 · 2018年9月29日
一份AI博士生的ICML2018“学霸”笔记(55页)
大数据文摘
21+阅读 · 2018年7月17日
福利 | 这是一个理论+实战的机器学习加油包
DBAplus社群
7+阅读 · 2018年6月28日
课程笔记|吴恩达Coursera机器学习 Week1 笔记-机器学习基础
机器学习研究会
4+阅读 · 2017年10月18日
机器学习实践指南
Linux中国
8+阅读 · 2017年9月28日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
3+阅读 · 2018年11月14日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关VIP内容
相关资讯
干货 | 可解释的机器学习
AI科技评论
20+阅读 · 2019年7月3日
ICML 2019必看!87页超强干货博士笔记总结
新智元
35+阅读 · 2019年6月17日
Reddit最火!55页博士笔记总结ICLR 2019大会干货
新智元
29+阅读 · 2019年5月11日
深度学习之路——论文阅读
专知
11+阅读 · 2018年9月29日
一份AI博士生的ICML2018“学霸”笔记(55页)
大数据文摘
21+阅读 · 2018年7月17日
福利 | 这是一个理论+实战的机器学习加油包
DBAplus社群
7+阅读 · 2018年6月28日
课程笔记|吴恩达Coursera机器学习 Week1 笔记-机器学习基础
机器学习研究会
4+阅读 · 2017年10月18日
机器学习实践指南
Linux中国
8+阅读 · 2017年9月28日
相关论文
Arxiv
13+阅读 · 2020年4月12日
Arxiv
3+阅读 · 2018年11月14日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
7+阅读 · 2018年5月23日
Top
微信扫码咨询专知VIP会员