AI朋克致敬MNIST:只用Python和开发板,制作永不重样的时钟

2020 年 3 月 10 日 机器之心
机器之心报道
项目作者:Dheera Venkatraman
参与:思、Jamin

是的,有了这面钟,这辈子都离不开 MNIST 手写数据集了。

我们见惯了上古时代,由电子管组成的时钟。在 AI 时代,有没有更加新潮的时间显示方式?是的,数据集也能做成时钟,每天早上,让 MNIST 手写数字唤醒你一天的记忆。


MNIST 是计算机视觉中不老的经典,当第一代卷积神经网络在这个手写数字数据集上绽放出耀眼的光芒,它注定会载入「史册」。

尽管目前计算机视觉已经早就走出了 MNIST 数据集的时代,甚至连一千多万图像的 ImageNet 也不再是非常大的一个图像数据集。然而,MNIST 仍然不可忽视,深度学习入门的第一个数据集、验证算法的第一个实验都是它。甚至连 Hinton 验证 Capsule 这个想法的数据集都用的它。


如果说想要致敬这样的数据集「先驱」,你会采用什么样的方式?在 GitHub 中,机器之心发现一个有意思的小项目,作者 Dheera Venkatraman 做了一面钟,里面的数字都是从 MNIST 数据集中采样的。

项目地址:https://github.com/dheera/mnist-clock

也就是说,24 小时随机抽万张不同的手写数字,每天都不带重样。做出来的效果是这样的:


这样的电子钟只需要简单的电路板再加上 4 块电子墨水屏就行了,它背后的样子是这样的:


硬件

项目使用了 TinyPICO 开发板;紧凑的 ESP32 板以及大量的 GPIO 插脚、4MB 闪存、Wi-Fi,以及其他很多功能。TinyPICO 可以说是目前世界上基于 ESP32-PICO-D4 体积最小的开发板,240 MHz 的 32 位双核处理器足够我们完成计算。

4 块 e-link 数字显示器,之所以选择 e-link,是因为它符合手写数字的概念,在任何光线条件下都能正常运行,而且也不至于打扰到任何人。Waveshare 的 e-link 显示屏大部分是 SPI,虽然也有些额外的引脚。大部分人会希望一块只包含 SPI 以及一块 CS 插脚,但多一些的链接器是有必要的。下面是 ESP32 的连接图,根据这个把电线卷起来。


作者在 TinyPICO 上使用的是两个 10-引脚的 JST-EH 的连接器,JST-EH 比 JST-XH 使用更低的配置,更适合插入,以及比标准引脚更短更安全。

JST-EH 连接器所连接的 TinyPICO

下面,再见硬件固定在 3D 打印的外壳上,就大功告成了:


如果读者们对硬件不熟悉,那也不要急,我们只要按照项目作者给出的硬件,并装配好就行了。后面我们会介绍所有「装备」的价格以及作者提供了设计图。

软件

项目作者 Dheera Venkatraman 表示,他经常写 C++或者 C,但他对 MicroPython 非常有兴趣,因此在这个项目中采用的就是它。

项目作者使用每像素 2 比特的灰度深度来表示 MNIST 手写数字。在这种比特深度下一张 28*28 像素的图像只需要 196 字节,因此一个 4MB 的闪存就能满足整个 MNIST 验证集。如果你想把整个数据集都装进去,那么也只需要换闪存更大的微控制器、或者使用 1 比特深度的图像、或者使用压缩方法等。

将所有文件放在 TinyPICO 根目录中的/ code 中,正确的文件大概如下图所示。


另外,我们还需要为 Wi-Fi 创建一个名为.wifi 的文件,中间写上 yourssid 与 yourpassword,具体的读取 WIFI 设置的代码就如下所示。


项目作者 Dheera Venkatraman 在 GitHub 中提供了所有代码文件,打印钟表数字的代码也非常易读。更友善的的是,作者的代码提供了非常完善的注释,基本重要的语句都有解读。


现实一点,做一块多少钱?

如果从硬件来看,似乎主要成本就是 TinyPICO 开发板以及四块 e-ink 屏。首先 TinyPICO 在淘宝或者国外网站都能买到,国外卖 20 美元,而淘宝上标价 235 元,加上运费其实也差不多。此外,读者也可以选择专门的元器件商城,其价格也在 200 块左右。


其次,一块 e-ink 屏大概 24 美元,虽然淘宝找不到,但是国内的元器件商城要便宜得多,一块只需要 92 元左右,可能树莓派对它的需求比较大吧。


其它的成本就比较少了,线材、连接器装时钟的外包装都比较容易获得,在国内的元器件商城也可以一次性买到。如果读者想 3D 打印外包装,作者也提供了具体的打印参数。所以,总的来说,制作成本应该是低于 650 元的,其中开发板和电子屏都可以在其它项目中再利用。

也许我们还能改进该项目作者的实现,在一块大的墨水屏上实现数字时钟,直接使用更常用的树莓派作为主板(功耗远高于 TinyPICO),并实现更多的能力,例如实时采样个 CIFAR-10 作为背景。总之,MNIST 数字时钟还有很多可以玩的地方。

最后,所有硬件与软件的详细信息都可查阅原项目。此外,值得一提的是,Dheera Venkatraman 还是非常有意思的一位小哥哥,他从杭州到北京沿着人类历史上最长的人工河靠自行车骑了 1600 公里。

Last But Not Least

确实 MNIST 站在舞台中央的时代已经过去了,但它的作用仍然不可忽视,仍然有很多研究者致力于改进并修复它,做出独特的贡献。

2017 年,德国时尚科技公司 Zalando 提供了 Fashion MNIST 数据集,它的大小、格式和训练集 / 测试集划分与原始的 MNIST 完全一致,从 MNIST 迁移到它,我们不需要修改任何代码。


去年 6 月份,NYU 和 Facebook 的研究者重建并扩展了 MNIST 数据集,在测试集中新增了 50000 个样本,将测试集增加到 6 万样本。MNIST 作者之一的 Yann LeCun 表示,「如果多次使用原版的 MNIST 测试集,你的模型可能在测试集上已经过拟合了,是时候在新增的样本上试一下了。」


不论是将 MNIST 做成日常生活中好看又好玩的项目,还是提升数据集本身的能力,MNIST 一直都会是活着的历史~

机器之心「智能战疫联合行动」在线分享活动第二个系列-AI × 工业自动化将重点关注人工智能在工业中的应用,覆盖协作机器人、工业 AI 视觉、智能排程、工业大脑等产业热点话题。3 月 11 日,库柏特科技有限公司创始人李淼将为大家做精彩分享。

登录查看更多
0

相关内容

MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据。
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
【干货书】用于概率、统计和机器学习的Python,288页pdf
专知会员服务
288+阅读 · 2020年6月3日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
340+阅读 · 2020年3月17日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
【书籍推荐】简洁的Python编程(Clean Python),附274页pdf
专知会员服务
180+阅读 · 2020年1月1日
3 行代码 5 秒抠图的 AI 神器,根本无需 PS
大数据技术
20+阅读 · 2019年7月24日
告别 PS !3 行代码 5 秒搞定抠图的 AI 神器!
程序人生
6+阅读 · 2019年7月11日
还在PS里手动描边?AI自动抠图只需5秒
机器之心
12+阅读 · 2018年12月19日
DeOldify:用GAN为黑白照片重新着色
论智
33+阅读 · 2018年11月2日
吃鸡手游竟然是Python写的?
机器学习算法与Python学习
7+阅读 · 2018年9月11日
实战 | 用Python做图像处理(二)
七月在线实验室
17+阅读 · 2018年5月25日
用Python制作3D动画
Python程序员
30+阅读 · 2018年1月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
Arxiv
8+阅读 · 2018年11月21日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年6月1日
VIP会员
相关资讯
3 行代码 5 秒抠图的 AI 神器,根本无需 PS
大数据技术
20+阅读 · 2019年7月24日
告别 PS !3 行代码 5 秒搞定抠图的 AI 神器!
程序人生
6+阅读 · 2019年7月11日
还在PS里手动描边?AI自动抠图只需5秒
机器之心
12+阅读 · 2018年12月19日
DeOldify:用GAN为黑白照片重新着色
论智
33+阅读 · 2018年11月2日
吃鸡手游竟然是Python写的?
机器学习算法与Python学习
7+阅读 · 2018年9月11日
实战 | 用Python做图像处理(二)
七月在线实验室
17+阅读 · 2018年5月25日
用Python制作3D动画
Python程序员
30+阅读 · 2018年1月17日
相关论文
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
Arxiv
8+阅读 · 2018年11月21日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年6月1日
Top
微信扫码咨询专知VIP会员