精选论文 | 图神经网络时间节点【附打包下载】

2019 年 5 月 6 日 人工智能前沿讲习班

关注文章公众号

回复"SFFAI27论文"获取本主题精选论文


论文共读


最近,图神经网络广泛受到了各界的关注,基于图神经网络的模型和应用在异质图表示学习和零样本学习任务中取得了不错的效果。今天,两位主讲嘉宾为大家精选了图神经网络方法中的几个代表性模型以及零样本学习模型,和大家一起学习分享最新的研究进展。

你可以认真阅读,来现场和讲者面对面交流哦。


1


推荐理由:图神经网络领域最经典的论文之一,也是Graph Convolutional Network的代表。本文对谱域的图卷积进行了分析,并对傅里叶变换后的频域图卷积进行了一阶近似。通过一个简单高效的传播模型在节点分类任务上取得最优效果。

推荐理由来自:纪厚业


2

推荐理由:在实际图数据中,两个节点建立连接的原因不同,连接强度也各不相同。本文所提出的Graph Attention Network将注意力机制引入到图神经网络中来学习节点邻居的重要性。GAT可以更好的处理桥节点和噪音邻居具有更好的鲁棒性。同时,通过对注意力权重进行分析,GAT具有更好的可解释性。

推荐理由来自:纪厚业


3


推荐理由:本文对Graph Convolutional Network进行了理论分析,证明了Graph Convolutional Network本质是一种Laplacian smoothing。多层GCN效果下降的原因是over-smoothing。最后本文提出了co-training和self-training来克服GCN的局限并通过实验验证了其效果。

推荐理由来自:纪厚业


4


推荐理由:对Graph Convolutional Network的局限性进行了分析。本文首先分析了PageRank和Graph Convolutional Network之间的联系与区别,并利用Personalized PageRank的角度来解决Graph Convolutional Network中存在的问题。本文提出的算法在经过多层传播后依然不会出现过平滑问题,并随着层数的增加,模型效果有了一定的提升。

推荐理由来自:纪厚业


5


推荐理由:结合知识图谱与图神经网络进行零样本图片分类的开创之作,发表在CVPR2018。本文通过知识图谱信息将物体类别构造成图,每个节点输入对应类别的词向量信息,输出该类别对应的分类器参数。通过使用已知类别预训练好的分类器进行二次回归优化,从而把分类器学习泛化到未知类上。

推荐理由来自:高君宇


6


推荐理由: 上一篇文章的改进版,被CVPR2019接收。主要改进有如下几个方面:

1. 将局部信息传播改为密集信息传播(Dense Graph Propagation, DGP),减少了GCN 的层数;

2. 根据连接边的远近引入attention机制进行加权计算;

3. 根据graph信息进行微调。

推荐理由来自:高君宇


7

推荐理由:使用知识图谱与图神经网络进行多标签零样本学习的开创之作,发表在CVPR2018。本文在语义类别空间中学习信息传递机制,从而可以建模已知类和未知类之间的相互依赖关系。

推荐理由来自:高君宇



报名须知


时间

2019年5月11日(周六)

14:00 -- 17:00


地点

中国科学院自动化研究所-自动化大厦十三层二会


报名方式

扫描二维码获取报名链接


活动名额

为了使更多的童鞋能够参与到论坛中,获得共同学习成长的机会,请童鞋们把此报名通知分享到朋友圈,并添加小助手发送分享截图,可免费获得报名链接(如您不便分享到朋友圈,也可添加小助手备注“获取报名链接",发送9.9元红包获取链接)。

1、为确保小范围深入交流,本次活动名额有限;

2、活动采取审核制报名,我们将根据用户研究方向与当期主题的契合度进行筛选,通过审核的用户将收到确认邮件;

3、如您无法按时到场参与活动,请于活动开始前 24 小时在AIDL微信公众号后台留言告知,留言格式为放弃报名 + 报名电话。无故缺席者,将不再享有后续活动的报名资格。


SFFAI招募召集人!

现代科学技术高度社会化,在科学理论与技术方法上更加趋向综合与统一,为了满足人工智能不同领域研究者相互交流、彼此启发的需求,我们发起了SFFAI这个公益活动。SFFAI每周举行一期线下活动,邀请一线科研人员分享、讨论人工智能各个领域的前沿思想和最新成果,使专注于各个细分领域的研究者开拓视野、触类旁通。

SFFAI自2018年9月16日举办第一期线下交流,每周一期,风雨无阻,截至目前已举办26期线下交流活动,共有51位讲者分享了他们的真知灼见,来自100多家单位的同学参与了现场交流,通过线上推文、网络直播等形式,50000+人次参与了SFFAI的活动。SFFAI已经成为人工智能学生交流的第一品牌,有一群志同道合的研究生Core-Member伙伴,有一批乐于分享的SPEAKER伙伴,还有许多认可活动价值、多次报名参加现场交流的观众。

我们邀请你一起来组织SFFAI主题论坛,加入SFFAI召集人团队。每个召集人负责1-2期SFFAI主题论坛的组织筹划,我们有一个SFFAI-CORE团队来支持你。一个人付出力所能及,创造一个一己之力不可及的自由丰盛。你带着你的思想,带着你的个性,来组织你感兴趣的SFFAI主题论坛。

当召集人有什么好处?

谁可以当召集人?

怎样才能成为召集人?

为什么要当召集人?

了解我们,加入我们,请点击下方海报!




历史文章推荐:



若您觉得此篇推文不错,麻烦点点在看↓↓

登录查看更多
17

相关内容

【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
150+阅读 · 2020年6月28日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
近期必读的12篇KDD 2019【图神经网络(GNN)】相关论文
专知会员服务
62+阅读 · 2020年1月10日
必读的7篇 IJCAI 2019【图神经网络(GNN)】相关论文
专知会员服务
91+阅读 · 2020年1月10日
六篇 CIKM 2019 必读的【图神经网络(GNN)】长文论文
专知会员服务
37+阅读 · 2019年11月3日
GraphSAGE: GCN落地必读论文
AI100
29+阅读 · 2019年8月15日
精选论文 | 网络结构搜索-单目标跟踪【附打包下载】
人工智能前沿讲习班
3+阅读 · 2019年7月2日
CVPR 2019 论文解读精选
AI研习社
7+阅读 · 2019年6月16日
精选论文 | 图深度学习【附打包下载】
人工智能前沿讲习班
11+阅读 · 2019年6月12日
SFFAI13 预告 | 图神经网络最新进展及挑战
人工智能前沿讲习班
10+阅读 · 2018年12月12日
SFFAI13 报名通知 | 图神经网络最新进展及挑战
人工智能前沿讲习班
11+阅读 · 2018年12月10日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
基于注意力机制的图卷积网络
科技创新与创业
73+阅读 · 2017年11月8日
Arxiv
20+阅读 · 2019年11月23日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关VIP内容
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
150+阅读 · 2020年6月28日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
近期必读的12篇KDD 2019【图神经网络(GNN)】相关论文
专知会员服务
62+阅读 · 2020年1月10日
必读的7篇 IJCAI 2019【图神经网络(GNN)】相关论文
专知会员服务
91+阅读 · 2020年1月10日
六篇 CIKM 2019 必读的【图神经网络(GNN)】长文论文
专知会员服务
37+阅读 · 2019年11月3日
相关资讯
GraphSAGE: GCN落地必读论文
AI100
29+阅读 · 2019年8月15日
精选论文 | 网络结构搜索-单目标跟踪【附打包下载】
人工智能前沿讲习班
3+阅读 · 2019年7月2日
CVPR 2019 论文解读精选
AI研习社
7+阅读 · 2019年6月16日
精选论文 | 图深度学习【附打包下载】
人工智能前沿讲习班
11+阅读 · 2019年6月12日
SFFAI13 预告 | 图神经网络最新进展及挑战
人工智能前沿讲习班
10+阅读 · 2018年12月12日
SFFAI13 报名通知 | 图神经网络最新进展及挑战
人工智能前沿讲习班
11+阅读 · 2018年12月10日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
基于注意力机制的图卷积网络
科技创新与创业
73+阅读 · 2017年11月8日
Top
微信扫码咨询专知VIP会员