“全球人工智能”拥有十多万AI产业用户,10000多名AI技术专家。主要来自:北大,清华,中科院,麻省理工,卡内基梅隆,斯坦福,哈佛,牛津,剑桥...以及谷歌,腾讯,百度,脸谱,微软,阿里,海康威视,英伟达......等全球名校和名企。
斯坦福CS229机器学习课程(2017):第一课视频!
课程笔记及相关材料
带+/- 1个标签的二进制分类[pdf:http://cs229.stanford.edu/extra-notes/loss-functions.pdf]
提升算法和弱学习[pdf:http://cs229.stanford.edu/extra-notes/boosting.pdf]
Representer定理[pdf:http://cs229.stanford.edu/extra-notes/representer-function.pdf]
Hoeffding不等式[pdf:http://cs229.stanford.edu/extra-notes/hoeffding.pdf]
线性代数评估与参考[pdf:http://cs229.stanford.edu/section/cs229-linalg.pdf]
概率论[pdf:http://cs229.stanford.edu/section/cs229-prob.pdf]
Matlab教程的文件:[pdf:http://cs229.stanford.edu/materials/MATLAB_Session.pdf] [sigmoid.m:http://cs229.stanford.edu/section/matlab/sigmoid.m] [logistic_grad_ascent.m:http://cs229.stanford.edu/section/matlab/logistic_grad_ascent.m] [matlab_session.m:http://cs229.stanford.edu/materials/matlab_session.m]
凸度优化概述,第一部分[ps:http://cs229.stanford.edu/section/cs229-cvxopt.ps] [pdf:http://cs229.stanford.edu/section/cs229-cvxopt.pdf]
凸优化概述,第二部分[ps:http://cs229.stanford.edu/section/cs229-cvxopt2.ps] [pdf:http://cs229.stanford.edu/section/cs229-cvxopt2.pdf]
隐马尔可夫模型[ps:http://cs229.stanford.edu/section/cs229-hmm.ps] [pdf:http://cs229.stanford.edu/section/cs229-hmm.pdf]
多变量高斯分布[pdf:http://cs229.stanford.edu/section/gaussians.pdf]
更多关于高斯分布[pdf:http://cs229.stanford.edu/section/more_on_gaussians.pdf]
高斯过程[pdf:http://cs229.stanford.edu/section/cs229-gaussian_processes.pdf]
附:斯坦福CS229机器学习课程(2017)课程排期:
进入全球人工智能学院