用Python搞机器学习、数据科学,需要很多相关的资料,各种库、工具,都是常用、常找、常查的内容。
最近,维也纳的数据科学家Florian Rohrer把这类相关资料整理成了一个Python机器学习工具合辑,可以照着更新一下自己的收藏夹了。
整个列表中,包含超过40类内容:
核心工具、Pandas和Jupyter、文本提取、大数据、统计、特征提取、可视化、地理工具、推荐系统、决策树、NLP、CV、神经网络、GPU、聚类、机器学习可解释性、强化学习……
具体都有什么呢?比如第一部分核心工具:
pandas、scikit-learn这些常用的库都有,直接链接到它们的GitHub或者官网页面。
再比如说可视化部分:
包括可以生成3D效果图的physt:
做各种统计图表的Yellowbrick:
这哪怕是做PPT,都非常有用啊!
另外,项目贡献者还安利了几个GitHub上不错的资源列表:
大部分都是几百几千星的资源表,也有不少标星数万的经典内容,比如awesome-machine-learning:
各种语言项目都有,是真的awesome。
最后,还有一个部分是“经常Google的内容”。
可能对大家有用的代码:
最后,送上资源传送门:
https://github.com/r0f1/datascience
— 完 —
量子位AI+系列沙龙--智慧城市
加入社群
量子位AI社群开始招募啦,量子位社群分:AI讨论群、AI+行业群、AI技术群;
欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“微信群”,获取入群方式。(技术群与AI+行业群需经过审核,审核较严,敬请谅解)
诚挚招聘
量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。
量子位 QbitAI · 头条号签约作者
վ'ᴗ' ի 追踪AI技术和产品新动态
喜欢就点这里吧 !