Nature子刊:未经训练的神经网络也可以进行人脸检测

1 月 10 日 机器之心
Nature子刊:未经训练的神经网络也可以进行人脸检测
机器之心报道
机器之心编辑部
最近发表在《自然 · 通讯》上的一项新研究表明,高级的视觉认知功能可以在未经训练的神经网络中自发产生,面部图像的视觉选择性甚至可以在完全未经训练的深度神经网络中产生。


对于动物的社会行为(群体中不同成员分工合作,共同维持群体生活的行为)来说,检测和识别面孔的能力至关重要。这种能力被认为起源于单神经元或多神经元水平的神经元调谐(神经元有选择地表示一种感觉、协同、运动、认知等信息的特性)。

科学家已经在不同物种的幼小动物身上观察到对面孔有选择性反应的神经元,这引起了激烈的争论:面孔选择性神经元是大脑天生的,还是需要依赖视觉体验?

近日,韩国科学技术院(KAIST)生物脑工程系教授 Se-Bum Paik 领导的研究小组为这个问题贡献了一份颇具参考价值的结果。他们发现,即使是完全没有经过训练的深度神经网络,也可以产生对面孔图像的视觉选择性。具体来说,在完全没有学习的情况下,他们在随机初始化的深度神经网络中观察到对面孔图像有选择性的神经元活动,这些活动显示出在生物大脑中观察到的那些特征。

这项新研究发表在 12 月份的《自然 · 通讯》杂志上。它为生物和人工神经网络认知功能发展的潜在机制提供了具有启发性的见解,也对我们理解早期大脑功能(感官体验之前)的起源产生了重大影响。


论文链接:https://www.nature.com/articles/s41467-021-27606-9.pdf

利用捕捉视觉皮层腹侧流(ventral stream)特性的模型神经网络——AlexNet45,研究小组发现,面孔选择性可以在随机初始化的 DNN 的不同条件下稳健地出现。而且,它们的面孔选择性指数(FSI)与那些在大脑中观察到的面孔选择性神经元相当。


借助反向相关(RC)方法和生成对抗网络获得的优选特征图像(preferred feature image)表明,面孔选择单元对类面孔配置是有选择性的,与没有选择性的单元不同。此外,面孔选择单元使网络能够执行面孔检测。


有趣的是,研究者还发现,在未经训练的神经网络中,对各种非面孔对象的单元选择性也可以天生地产生,这意味着面孔选择性可能不是一种特殊类型的视觉调谐,而对各种对象类别的选择性也可以天生地在未经训练的 DNN 中产生,自发地由随机前馈连接产生。

这些结果暗示了一种可能的情况,即在早期未经训练的网络中发展的随机前馈连接可能足以初始化原始的视觉认知功能。

Paik 教授说:「我们的研究结果表明,即使在完全没有学习的情况下,先天认知功能也可以自发地从分层前馈投影电路中嵌入的统计复杂性中产生。研究结果提供了广泛的概念上的进步,以及对生物和人工神经网络先天功能发展背后机制的深入了解,后者有助于解开智能产生和进化的谜题。」

参考链接:https://techxplore.com/news/2021-12-untrained-deep-neural-networks.html


© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

登录查看更多
0

相关内容

【Nature. Mach. Intell. 】图神经网络论文汇集
专知会员服务
40+阅读 · 3月26日
【Nature通讯】深度神经网络模型中的个体差异
专知会员服务
12+阅读 · 2020年11月16日
【Twitter】时序图神经网络
专知会员服务
63+阅读 · 2020年10月15日
来看看几篇Nature上的GNN吧~
图与推荐
1+阅读 · 3月25日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2021年3月2日
A Survey on Bayesian Deep Learning
Arxiv
51+阅读 · 2020年7月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
15+阅读 · 2018年12月21日
小贴士
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员