【ICML2022】NeuroFluid: 流体仿真的人工智能新范式

2022 年 6 月 9 日 专知

近日,上海交通大学人工智能研究院杨小康教授、王韫博助理教授指导的AI+Science研究团队的成果《NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural Radiance Fields》被国际顶级机器学习会议ICML 2022收录。论文所提出的“神经流体(NeuroFluid)”模型,利用基于神经隐式场的人工智能可微渲染技术,将流体物理仿真看作求解流体场景三维渲染问题的逆问题——从流体场景的一段多视角表观图像中,即可反推出流体内部的运动规律。这项成果为计算流体动力学、多粒子动力学系统研究开辟了一种人工智能新途径。

论文链接: 

https://www.zhuanzhi.ai/paper/ddad8ebf86c68fae5d98015f1bc671f7

代码地址: 

github.com/syguan96/NeuroFluid

项目主页: 

syguan96.github.io/NeuroFluid/

  ●  ●  ●  ●  ●  ●  ● 


图1. NeuroFluid从流体的视觉观测中反演其物理动态




流体运动研究是重要的自然科学基础研究领域,在航空航天、大气、海洋、航运、能源、建筑、环境等众多领域有着广泛应用。在传统研究方法中,求解流体运动(例如速度场)需要首先在理论上精确刻画流体的动力学模型,并结合微分方程、数值分析对模型求解。但是通常对于复杂问题(例如湍流),人们很难用数学物理方程进行描述,复杂流体的Navier-Stokes方程是世界级千禧难题,至今依然没被很好解决。现有基于深度学习的方法通常从拉格朗日视角描述流体,即流体被看作由许多粒子组成,通过测定和约束每个粒子的运动即可测定和改变流体的运动。但是大多数方法通常要求已知流体的物理属性(例如粘性),并且需要粒子的运动信息(位置和速度)作为训练数据,这在真实场景中几乎不太可能。

针对流体力学模型难以刻画和求解的问题,本文提出一种名为NeuroFluid的神经网络方法,实现流体动态反演(fluid dynamics grounding),即根据稀疏视角下对流体的2D表观视觉观察,推断推流体内在的3D物理运动状态,例如粒子的速度和位置等。如图2所示,NeuroFluid包含基于神经网络的流体粒子状态转移模型(Particle Transition Model)和由粒子驱动的神经网络渲染器(PhysNeRF),并将二者整合到一个端到端的联合优化框架中。优化过程包含三个阶段:

1. 模拟:粒子状态转移模型根据初始状态(可用立体视觉方法粗估)预测流体粒子在后续时刻的运动轨迹;

2. 渲染:神经网络渲染器PhysNeRF(图2右)根据粒子的几何信息将模拟结果渲染成图像;

3. 比对:渲染图像和真实图像比对,计算误差,通过梯度反向传递优化模型参数。

图2. NeuroFluid的训练过程(图左)及PhysNeRF的渲染示意(图右)




本文使用的流体数据(HoneyCone、WaterCube、WaterSphere)具有不同的物理属性(如密度、粘度、颜色)或初始状态(如流体粒子位置、整体形态)。


下列的实验从粒子动态反演、未来状态预测、新视角图像渲染、PhysNeRF域外场景泛化,验证了NeuroFluid的有效性。

1

实验1:流体粒子动态反演

本实验计算从图像反演的粒子位置与真实粒子位置之间的距离误差(Pred2GT distance),作为评价指标。图3展示了NeuroFluid与流体粒子预测的有监督方法DLF[1]的数值结果对比,显然,NeuroFluid从视频中反演的流体粒子状态比DLF(用粒子运动速度和位置作为训练数据)更准确。图4对模型的粒子状态推断结果做了可视化,注意到随着时间的推移,NeuroFluid相比基线模型,其反演结果运动更加自然,能更好地匹配真实流体动态。

图3. NeuroFluid(浅蓝色)在三个测试集上关于流体粒子位置的反演结果,相比流体粒子仿真的有监督模型DLF,NeuroFluid从图像推理流体内部状态,明显具有更好的准确性


图4. NeuroFluid(第三行)在WaterCube场景中对流体粒子位置的推断结果,图中第一行为生成对应观测图像序列时所使用的“真实”流体粒子位置


2

实验2:流体未来状态预测

在有效学习了流体的粒子状态转移模型后,可以很方便地实现预测流体在未来时刻的运动状态。如图5所示,本实验评估未来十个时刻内,模型预测的粒子位置与真实情况的误差。结果表明,NeuroFluid能够通过视觉观测学习流体运动的规律,推演合理的流体未来动态。

图5. 流体未来状态预测误差。其中,DLF*表示将基线模型在与测试场景物理属性相近的数据上进行微调;DLF+表示将基线模型直接在测试场景上进行微调


3

实验3:流体场景的新视角图像渲染

为了验证PhysNeRF渲染器的有效性,本实验在新视角合成(novel view synthesis)的任务上,广泛对比了各种基于神经隐式场的可微渲染技术,包括NeRF[2],NeRT-T (即NeRF+Time Index), D-NeRF[3]和Li et al. (2022)[4]等。如图6所示,在输入了粒子几何信息的情况下,NeuroFluid的渲染结果不仅在动态上与目标结果的匹配度最高,而且可以更好地渲染出流体的细节(如溅起的水珠)。


图6. 新视角合成结果对比,左起第一列为新视角下的目标图像


4

实验4:  域外场景泛化

PhysNeRF的基本假设是流体图像渲染应以粒子状态为驱动,故而应具有不同粒子分布下的强大泛化能力。为验证其泛化能力,本实验在使用有限的场景训练好PhysNeRF渲染器后,在测试时改变了流体的初始形貌,如图7所示,该几何形状为计算机图形学经典的Stanford Bunny。值得注意的是,在没有用Stanford Bunny数据对模型进行训练微调的情况下,PhysNeRF较为精细地渲染出了流体的表面细节。


图7. PhysNeRF在域外流体场景(训练所未见)上的泛化效果



总结:上海交通大学AI+Science研究团队所提出的NeuroFluid模型能成功拟合符合视觉观测的流体运动转移规律,从视觉表观观测反演流体内在运动,有望为传统流体力学无法准确刻画的复杂流体运动(如湍流)提供一种全新的计算范式。



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“NRFD” 就可以获取【ICML2022】NeuroFluid: 流体仿真的人工智能新范式》专知下载链接

                       
专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取100000+AI(AI与军事、医药、公安等)主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取100000+AI主题知识资料
登录查看更多
1

相关内容

【ICML2022】在线决策Transformer
专知会员服务
33+阅读 · 2022年7月27日
【ICML2022】通过能量最小化学习迭代推理
专知会员服务
25+阅读 · 2022年7月3日
【ICML2022】Transformer是元强化学习器
专知会员服务
53+阅读 · 2022年6月15日
【ICML2022】Sharp-MAML:锐度感知的模型无关元学习
专知会员服务
16+阅读 · 2022年6月10日
[ICML2022] NeuroFluid: 流体仿真的人工智能新范式
专知会员服务
23+阅读 · 2022年6月8日
专知会员服务
32+阅读 · 2021年9月7日
专知会员服务
23+阅读 · 2021年6月8日
专知会员服务
37+阅读 · 2021年6月3日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【ICML2022】通过能量最小化学习迭代推理
直播预告 | 国际人工智能联合会议专场六!
THU数据派
0+阅读 · 2021年12月29日
ECCV2018|视觉目标跟踪之DaSiamRPN
极市平台
11+阅读 · 2018年8月22日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年7月27日
VIP会员
相关VIP内容
【ICML2022】在线决策Transformer
专知会员服务
33+阅读 · 2022年7月27日
【ICML2022】通过能量最小化学习迭代推理
专知会员服务
25+阅读 · 2022年7月3日
【ICML2022】Transformer是元强化学习器
专知会员服务
53+阅读 · 2022年6月15日
【ICML2022】Sharp-MAML:锐度感知的模型无关元学习
专知会员服务
16+阅读 · 2022年6月10日
[ICML2022] NeuroFluid: 流体仿真的人工智能新范式
专知会员服务
23+阅读 · 2022年6月8日
专知会员服务
32+阅读 · 2021年9月7日
专知会员服务
23+阅读 · 2021年6月8日
专知会员服务
37+阅读 · 2021年6月3日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员