论文提出了一种面向图像级标签的弱监督语义分割的激活值调制和重校准方案。该方法利用注意力调制模块挖掘面向分割任务的目标区域,通过补偿分支产生的CAM图校准基准的响应图,得到图像的伪标签,该方法在PASCAL VOC2012数据集上获得了SOTA性能。

图像级弱监督语义分割(WSSS)是一项基本但极具挑战性的计算机视觉任务,该任务有助于促进场景理解和自动驾驶领域的发展。现有的技术大多采用基于分类的类激活图(CAM)作为初始的伪标签,这些伪标签往往集中在有判别性的图像区域,缺乏针对于分割任务的定制化特征。

为了解决上述问题,字节跳动 - 智能创作团队提出了一种即插即用的激活值调制和重校准(Activation Modulation and Recalibration 简称 AMR)模块来生成面向分割任务的 CAM,大量的实验表明,AMR 不仅在 PASCAL VOC 2012 数据集上获得最先进的性能。实验表明,AMR 是即插即用的,可以作为其他先进方法的子模块来提高性能。论文已入选机器学习顶级论文 AAAI2022,相关代码即将开源。

论文链接:https://www.zhuanzhi.ai/paper/3dc03cacb03652e24ac236ffe99f8473

GitHub 链接:https://github.com/jieqin-ai/AMR

成为VIP会员查看完整内容
18

相关内容

【CVPR2022】弱监督语义分割的类重新激活图
专知会员服务
16+阅读 · 2022年3月7日
专知会员服务
42+阅读 · 2021年8月20日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
50+阅读 · 2021年1月19日
专知会员服务
45+阅读 · 2020年10月5日
专知会员服务
41+阅读 · 2020年2月20日
AAAI 2020 | 樊峻菘:弱监督语义分割(视频解读)
AI科技评论
11+阅读 · 2020年1月29日
CVPR 2019 Oral 论文解读 | 无监督域适应语义分割
AI科技评论
49+阅读 · 2019年5月29日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
3+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
24+阅读 · 2018年10月24日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关VIP内容
【CVPR2022】弱监督语义分割的类重新激活图
专知会员服务
16+阅读 · 2022年3月7日
专知会员服务
42+阅读 · 2021年8月20日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
50+阅读 · 2021年1月19日
专知会员服务
45+阅读 · 2020年10月5日
专知会员服务
41+阅读 · 2020年2月20日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员