AAAI 2020 | 樊峻菘:弱监督语义分割(视频解读)

2020 年 1 月 29 日 AI科技评论

作者 | 樊峻菘

编辑 | Camel

本文是对中科院自动化所谭铁牛院士团队完成,被 AAAI2020 录用的论文《CIAN: Cross-Image Affinity Net for weakly Supervised Semantic Segmentation》进行解读。


论文简介:

以图像类别标签为监督信息的弱监督语义分割往往面临目标区域估计不完整的问题。为了缓解这个问题,本文提出了一种对跨图像间关系进行建模的方法。该方法在同类别不同图像之间建立像素级的关系矩阵,并据此从不同的图像间取得互相补充的信息,用以增广原特征并获取更加完整和鲁棒的目标区域估计。

实验证明该方法可以有效学得相关目标间的关联关系,辅助得到对整个目标更加完整鲁棒的预测结果,并且在多种质量的初始估计下都能取得显著的提升,具有很好的泛化性。在仅使用图像类别标签作为监督信息下,该方法在 VOC2012 数据集上取得了当时最好的 65.3% mIoU 的测试结果,证明了方法的有效性。

(或者到AI研习社官网观看更多AAAI 2020 论文解读视频:http://www.mooc.ai/open?from=meeting)



作者简介:

大家好,我是自动化所智能感知中心的在读博士生樊峻菘,导师谭铁牛院士。研究方向主要关于资源受限下的视觉场景解析等。




更多AAAI 2020信息,将在「AAAI 2020 交流群」中进行,加群方式:添加AI研习社顶会小助手(AIyanxishe2),备注「AAAI」,邀请入群。



AAAI 2020 论文集:
AAAI 2020 论文解读会 @ 望京(附PPT下载)
AAAI 2020上的NLP有哪些研究风向?


AAAI 2020 论文解读系列:

01. [中科院自动化所] 通过识别和翻译交互打造更优的语音翻译模型
02. [中科院自动化所] 全新视角,探究「目标检测」与「实例分割」的互惠关系
03. [北理工] 新角度看双线性池化,冗余、突发性问题本质源于哪里?
04. [复旦大学] 利用场景图针对图像序列进行故事生成
05. [腾讯 AI Lab] 2100场王者荣耀,1v1胜率99.8%,腾讯绝悟 AI 技术解读
06. [复旦大学] 多任务学习,如何设计一个更好的参数共享机制?
07. [清华大学] 话到嘴边却忘了?这个模型能帮你 | 多通道反向词典模型
08. [北航等] DualVD: 一种视觉对话新框架
09. [清华大学] 借助BabelNet构建多语言义原知识库
10. [微软亚研] 沟壑易填:端到端语音翻译中预训练和微调的衔接方法
11. [微软亚研] 时间可以是二维的吗?基于二维时间图的视频内容片段检测
12. [清华大学] 用于少次关系学习的神经网络雪球机制
13. [中科院自动化所] 通过解纠缠模型探测语义和语法的大脑表征机制
14. [中科院自动化所] 多模态基准指导的生成式多模态自动文摘
15. [南京大学] 利用多头注意力机制生成多样性翻译
16. [UCSB 王威廉组] 零样本学习,来扩充知识图谱(视频解读)
17. [上海交大] 基于图像查询的视频检索,代码已开源!
18. [奥卢大学] 基于 NAS 的 GCN 网络设计(视频解读)
19. [中科大] 智能教育系统中的神经认知诊断,从数据中学习交互函数
20. [北京大学] 图卷积中的多阶段自监督学习算法
21. [清华大学] 全新模型,对话生成更流畅、更具个性化(视频解读,附PPT)
22. [华南理工] 面向文本识别的去耦注意力网络
23. [自动化所] 基于对抗视觉特征残差的零样本学习方法
24. [计算所] 引入评估模块,提升机器翻译流畅度和忠实度(已开源)
25. [北大&上交大] 姿态辅助下的多相机协作实现主动目标追踪
26. [快手] 重新审视图像美学评估 & 寻找精彩片段聚焦点
27. [计算所&微信AI] 改进训练目标,提升非自回归模型翻译质量(已开源)
28. [中科院&云从科技]: 双视图分类,利用多个弱标签提高分类性能
29. [中山大学] 基于树状结构策略的渐进强化学习
30. [东北大学] 基于联合表示的神经机器翻译(视频解读)
31. [计算所]引入评估模块,提升机器翻译流畅度和忠实度(视频解读)
32. [清华大学]用于少次关系学习的神经网络雪球机制(视频解读)
33. [计算所]非自回归机器翻译,基于n元组的训练目标(视频解读)
34. [清华大学] 司法考试数据集(视频解读,附下载链接)

    

点击“阅读原文” 前往 AAAI 2020 专题页


登录查看更多
11

相关内容

【CVPR2020】时序分组注意力视频超分
专知会员服务
30+阅读 · 2020年7月1日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
60+阅读 · 2020年6月25日
专知会员服务
41+阅读 · 2020年2月20日
近期必读的8篇 AAAI 2020【图神经网络(GNN)】相关论文
专知会员服务
76+阅读 · 2020年1月15日
CVPR 2019 Oral 论文解读 | 无监督域适应语义分割
AI科技评论
49+阅读 · 2019年5月29日
CVPR 2018 | 无监督语义分割之全卷积域适应网络
极市平台
8+阅读 · 2018年6月28日
让机器“一叶知秋”:弱监督视觉语义分割
深度学习大讲堂
6+阅读 · 2018年5月24日
CVPR 2018 论文解读(部分)
计算机视觉战队
5+阅读 · 2018年5月8日
见微知著:语义分割中的弱监督学习
深度学习大讲堂
11+阅读 · 2017年12月6日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
4+阅读 · 2018年10月5日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关资讯
CVPR 2019 Oral 论文解读 | 无监督域适应语义分割
AI科技评论
49+阅读 · 2019年5月29日
CVPR 2018 | 无监督语义分割之全卷积域适应网络
极市平台
8+阅读 · 2018年6月28日
让机器“一叶知秋”:弱监督视觉语义分割
深度学习大讲堂
6+阅读 · 2018年5月24日
CVPR 2018 论文解读(部分)
计算机视觉战队
5+阅读 · 2018年5月8日
见微知著:语义分割中的弱监督学习
深度学习大讲堂
11+阅读 · 2017年12月6日
Top
微信扫码咨询专知VIP会员