题目: A Style-Based Generator Architecture for Generative Adversarial Networks

摘要:

我们为生成对抗网络提出了一种替代的生成器体系结构,借鉴了风格转移文献。新的体系结构可以自动地、无监督地分离高级属性(例如,在人脸上训练时的姿态和身份)和生成图像中的随机变化(例如,在人脸上训练时的姿态和身份),它使规模具体的控制合成。新的生成器在传统的分布质量度量方面改进了当前的技术水平,显著地提高了插值性能,并更好地释放了潜在的变化因素。为了量化插值质量和解纠缠,我们提出了两种适用于任何生成器架构的新的自动化方法。最后,我们介绍一个新的、高度多样化和高质量的人脸数据集。

作者:

Timo Aila是英伟达杰出的研究科学家,阿尔托大学讲师。目前的研究方向是神经网络、计算机视觉和计算机图形学的交叉领域,特别是以生成模型为重点来理解学习。

成为VIP会员查看完整内容
2

相关内容

生成对抗网络(GAN)是Ian Goodfellow及其同事在2014年设计的一类机器学习框架。两个神经网络在游戏中相互竞争(从博弈论的角度讲,通常但并非总是以零和博弈的形式)。 在给定训练集的情况下,该技术将学习生成具有与训练集相同的统计数据的新数据。 例如,受过照片训练的GAN可以生成新照片,这些新照片至少对人类观察者而言表面上看起来真实,具有许多现实特征。 尽管GAN最初是作为一种形式的无监督学习模型提出的,但它也已被证明可用于半监督学习,完全监督学习和强化学习。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
必读的10篇 CVPR 2019【生成对抗网络】相关论文和代码
专知会员服务
31+阅读 · 2020年1月10日
必读!TOP10生成对抗网络GAN论文(附链接)
数据派THU
16+阅读 · 2019年3月24日
论文推荐 | 生成对抗网络GAN论文TOP 10
机器学习算法与Python学习
5+阅读 · 2019年3月20日
必读!生成对抗网络GAN论文TOP 10
全球人工智能
6+阅读 · 2019年3月19日
2018 年最棒的三篇 GAN 论文
AI科技评论
4+阅读 · 2019年1月14日
GAN 生成对抗网络论文阅读路线图
GAN生成式对抗网络
27+阅读 · 2018年10月30日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
4+阅读 · 2018年9月25日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关VIP内容
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
必读的10篇 CVPR 2019【生成对抗网络】相关论文和代码
专知会员服务
31+阅读 · 2020年1月10日
相关资讯
必读!TOP10生成对抗网络GAN论文(附链接)
数据派THU
16+阅读 · 2019年3月24日
论文推荐 | 生成对抗网络GAN论文TOP 10
机器学习算法与Python学习
5+阅读 · 2019年3月20日
必读!生成对抗网络GAN论文TOP 10
全球人工智能
6+阅读 · 2019年3月19日
2018 年最棒的三篇 GAN 论文
AI科技评论
4+阅读 · 2019年1月14日
GAN 生成对抗网络论文阅读路线图
GAN生成式对抗网络
27+阅读 · 2018年10月30日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
微信扫码咨询专知VIP会员