人工智能技术因其强大的学习和泛化能力已经被广泛应用到各种真实场景中.然而,现有人工智能技术还面临着三大挑战.第一,现有AI技术使用门槛高,依赖于AI从业者选择合适模型、设计合理参数、编写程序,因此很难被广泛应用到非计算机领域;第二,现有AI算法训练效率低,造成了大量计算资源浪费,甚至延误决策时机;第三、现有AI技术强依赖高质量数据,如果数据质量较低,可能造成计算结果的错误.数据库技术可以有效解决这三个难题,因此目前面向AI的数据管理得到了广泛关注.本文首先给出AI中数据管理的整体框架,然后详细综述基于声明式语言模型的AI系统、面向AI优化的计算引擎、执行引擎和面向AI的数据治理引擎四个方面.最后展望未来的研究方向和挑战.