端到端关系抽取旨在识别命名实体,同时抽取其关系。近期研究大多采取 joint 方式建模这两项子任务,要么将二者统一在一个结构化预测网络中,要么通过共享表示进行多任务学习。
而近期来自普林斯顿大学的 Zexuan Zhong、陈丹琦介绍了一种非常简单的方法,并在标准基准(ACE04、ACE05 和 SciERC)上取得了新的 SOTA 成绩。该方法基于两个独立的预训练编码器构建而成,只使用实体模型为关系模型提供输入特征。通过一系列精心检验,该研究验证了学习不同的语境表示对实体和关系的重要性,即在关系模型的输入层融合实体信息,并集成全局语境信息。
此外,该研究还提出了这一方法的高效近似方法,只需要在推断时对两个编码器各执行一次,即可获得 8-16 倍的加速,同时准确率仅小幅下降。