题目: The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches

简介:

近年来,深度学习在各个应用领域都取得了巨大的成功。这一新的机器学习领域发展迅速,已经应用到大多数传统的应用领域,以及一些提供更多机会的新领域。基于不同的学习类别,提出了不同的学习方法,包括监督学习、半监督学习和非监督学习。当与传统的机器学习方法在图像理、计算机视觉、语音识别、机器翻译、艺术、医学成像、医疗信息处理、机器人控制、生物信息学、自然语言处理(NLP),网络安全等相比,实验结果表明了使用深度学习最先进的性能。

本报告从深度神经网络(DNN)开始,简要介绍了DL领域的研究进展。调查涵盖了卷积神经网络(CNN)、递归神经网络(RNN),包括长短时记忆(LSTM)和门控递归单元(GRU)、自动编码器(AE)、深度信念网络(DBN)、生成对抗网络(GAN)和深度强化学习(DRL)。此外,我们还介绍了最新的发展,例如基于这些DL方法的高级DL变体技术。本研究考虑了2012年以后发表的关于深度学习历史开始的大部分论文。此外,在不同的应用领域中探索和评估过的DL方法也包括在本次调查中。我们还包括最近开发的用于实现和评估深度学习方法的框架、sdk和基准数据集。有一些关于使用神经网络进行深度学习的调查和关于RL的调查已经发表。然而,这些论文并没有讨论用于训练大规模深度学习模型的个别先进技术和最近发展起来的生成模型方法。

作者简介:

Md Zahangir Alom博士是美国俄亥俄州代顿大学的研究工程师。他分别于2008年和2012年获得了孟加拉国拉杰沙伊大学(University of Rajshahi)和韩国全北国立大学(Chonbuk National University)的计算机工程学士和硕士学位。2018年,他获得了戴顿大学电子和计算机工程博士学位。他的研究兴趣包括机器学习、深度学习、医学成像和计算病理学。他是IEEE学生会员,国际神经网络协会(INNS)会员,美国数字病理学协会(DPA)会员。

Tarek M. Taha博士是代顿大学(University of Dayton)电子和计算机工程教授。他的研究兴趣是神经形态计算和高性能计算。Tarek M. Taha博士是美国国家科学基金会职业奖的获得者。

成为VIP会员查看完整内容
0
39

相关内容

Md Zahangir Alom博士是美国俄亥俄州代顿大学的研究工程师。他分别于2008年和2012年获得了孟加拉国拉杰沙伊大学(University of Rajshahi)和韩国全北国立大学(Chonbuk National University)的计算机工程学士和硕士学位。2018年,他获得了戴顿大学电子和计算机工程博士学位。他的研究兴趣包括机器学习、深度学习、医学成像和计算病理学。他是IEEE学生会员,国际神经网络协会(INNS)会员,美国数字病理学协会(DPA)会员。

自动驾驶一直是人工智能应用中最活跃的领域。几乎在同一时间,深度学习的几位先驱取得了突破,其中三位(也被称为深度学习之父)Hinton、Bengio和LeCun获得了2019年ACM图灵奖。这是一项关于采用深度学习方法的自动驾驶技术的综述。我们研究了自动驾驶系统的主要领域,如感知、地图和定位、预测、规划和控制、仿真、V2X和安全等。由于篇幅有限,我们将重点分析几个关键领域,即感知中的二维/三维物体检测、摄像机深度估计、数据、特征和任务级的多传感器融合、车辆行驶和行人轨迹的行为建模和预测。

https://arxiv.org/abs/2006.06091

成为VIP会员查看完整内容
1
80

随着高计算设备的发展,深度神经网络(DNNs)近年来在人工智能(AI)领域得到了广泛的应用。然而,之前的研究表明,DNN在经过策略性修改的样本(称为对抗性样本)面前是脆弱的。这些样本是由一些不易察觉的扰动产生的,但可以欺骗DNN做出错误的预测。受图像DNNs中生成对抗性示例的流行启发,近年来出现了针对文本应用的攻击DNNs的研究工作。然而,现有的图像扰动方法不能直接应用于文本,因为文本数据是离散的。在这篇文章中,我们回顾了针对这一差异的研究工作,并产生了关于DNN的电子对抗实例。我们对这些作品进行了全面的收集、选择、总结、讨论和分析,涵盖了所有相关的信息,使文章自成一体。最后,在文献回顾的基础上,我们提出了进一步的讨论和建议。

成为VIP会员查看完整内容
0
42

【简介】自然语言处理(NLP)能够帮助智能型机器更好地理解人类的语言,实现基于语言的人机交流。目前随着计算能力的发展和大量语言数据的出现,推动了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域取得了显著的进步,数据驱动策略的应用已经非常的普遍。本综述对NLP领域中所应用的深度学习进行了分类和讨论。它涵盖了NLP的核心任务和应用领域,并对深度学习方法如何推进这些领域的发展进行了细致的描述。最后我们进一步分析和比较了不同的方法和目前最先进的模型。

原文连接:https://arxiv.org/abs/2003.01200

介绍

自然语言处理(NLP)是计算机科学的一个分支,能够为自然语言和计算机之间提高沟通的桥梁。它帮助机器理解、处理和分析人类语言。NLP通过深入地理解数据的上下文,使得数据变得更有意义,这反过来又促进了文本分析和数据挖掘。NLP通过人类的通信结构和通信模式来实现这一点。这篇综述涵盖了深度学习在NLP领域中所扮演的新角色以及各种应用。我们的研究主要集中在架构上,很少讨论具体的应用程序。另一方面,本文描述了将深度学习应用于NLP问题中时所面临的挑战、机遇以及效果评估方式。

章节目录

section 2: 在理论层面介绍了NLP和人工智能,并将深度学习视为解决现实问题的一种方法。

section 3:讨论理解NLP所必需的基本概念,包括各种表示法、模型框架和机器学习中的示例性问题。

section 4:总结了应用在NLP领域中的基准数据集。

section 5:重点介绍一些已经被证明在NLP任务中有显著效果的深度学习方法。

section 6:进行总结,同时解决了一些开放的问题和有希望改善的领域。

成为VIP会员查看完整内容
0
77

​【导读】图像分类是计算机视觉中的基本任务之一,深度学习的出现是的图像分类技术趋于完善。最近,自监督学习与预训练技术的发展使得图像分类技术出现新的变化,这篇论文概述了最新在实际情况中少标签小样本等情况下,关于自监督学习、半监督、无监督方法的综述,值得看!

地址:

https://www.zhuanzhi.ai/paper/6d160a5f8634d25a2feda7a30e1e5132

摘要

虽然深度学习策略在计算机视觉任务中取得了突出的成绩,但仍存在一个问题。目前的策略严重依赖于大量的标记数据。在许多实际问题中,创建这么多标记的训练数据是不可行的。因此,研究人员试图将未标记的数据纳入到培训过程中,以获得与较少标记相同的结果。由于有许多同时进行的研究,很难掌握最近的发展情况。在这项调查中,我们提供了一个概述,常用的技术和方法,在图像分类与较少的标签。我们比较了21种方法。在我们的分析中,我们确定了三个主要趋势。1. 基于它们的准确性,现有技术的方法可扩展到实际应用中。2. 为了达到与所有标签的使用相同的结果所需要的监督程度正在降低。3.所有方法都共享公共技术,只有少数方法结合这些技术以获得更好的性能。基于这三个趋势,我们发现了未来的研究机会。

1. 概述

深度学习策略在计算机视觉任务中取得了显著的成功。它们在图像分类、目标检测或语义分割等各种任务中表现最佳。

图1: 这张图说明并简化了在深度学习训练中使用未标记数据的好处。红色和深蓝色的圆圈表示不同类的标记数据点。浅灰色的圆圈表示未标记的数据点。如果我们只有少量的标记数据可用,我们只能对潜在的真实分布(黑线)做出假设(虚线)。只有同时考虑未标记的数据点并明确决策边界,才能确定这种真实分布。

深度神经网络的质量受到标记/监督图像数量的强烈影响。ImageNet[26]是一个巨大的标记数据集,它允许训练具有令人印象深刻的性能的网络。最近的研究表明,即使比ImageNet更大的数据集也可以改善这些结果。但是,在许多实际的应用程序中,不可能创建包含数百万张图像的标记数据集。处理这个问题的一个常见策略是迁移学习。这种策略甚至可以在小型和专门的数据集(如医学成像[40])上改进结果。虽然这对于某些应用程序来说可能是一个实际的解决方案,但基本问题仍然存在: 与人类不同,监督学习需要大量的标记数据。

对于给定的问题,我们通常可以访问大量未标记的数据集。Xie等人是最早研究无监督深度学习策略来利用这些数据[45]的人之一。从那时起,未标记数据的使用被以多种方式研究,并创造了研究领域,如半监督、自我监督、弱监督或度量学习[23]。统一这些方法的想法是,在训练过程中使用未标记的数据是有益的(参见图1中的说明)。它要么使很少有标签的训练更加健壮,要么在某些不常见的情况下甚至超过了监督情况下的性能[21]。

由于这一优势,许多研究人员和公司在半监督、自我监督和非监督学习领域工作。其主要目标是缩小半监督学习和监督学习之间的差距,甚至超越这些结果。考虑到现有的方法如[49,46],我们认为研究处于实现这一目标的转折点。因此,在这个领域有很多正在进行的研究。这项综述提供了一个概述,以跟踪最新的在半监督,自监督和非监督学习的方法。

大多数综述的研究主题在目标、应用上下文和实现细节方面存在差异,但它们共享各种相同的思想。这项调查对这一广泛的研究课题进行了概述。这次调查的重点是描述这两种方法的异同。此外,我们还将研究不同技术的组合。

2. 图像分类技术

在这一节中,我们总结了关于半监督、自监督和非监督学习的一般概念。我们通过自己对某些术语的定义和解释来扩展这一总结。重点在于区分可能的学习策略和最常见的实现策略的方法。在整个综述中,我们使用术语学习策略,技术和方法在一个特定的意义。学习策略是算法的一般类型/方法。我们把论文方法中提出的每个算法都称为独立算法。方法可以分为学习策略和技术。技术是组成方法/算法的部分或思想。

2.1 分类方法

监督、半监督和自我监督等术语在文献中经常使用。很少有人给出明确的定义来区分这两个术语。在大多数情况下,一个粗略的普遍共识的意义是充分的,但我们注意到,在边界情况下的定义是多种多样的。为了比较不同的方法,我们需要一个精确的定义来区分它们。我们将总结关于学习策略的共识,并定义我们如何看待某些边缘案例。一般来说,我们根据使用的标记数据的数量和训练过程监督的哪个阶段来区分方法。综上所述,我们把半监督策略、自我学习策略和无监督学习策略称为reduced减约监督学习策略。图2展示了四种深度学习策略。

图2: 插图的四个深学习策略——红色和深蓝色的圆圈表示标记数据点不同的类。浅灰色的圆圈表示未标记的数据点。黑线定义了类之间的基本决策边界。带条纹的圆圈表示在训练过程的不同阶段忽略和使用标签信息的数据点。

监督学习 Supervised Learning

监督学习是深度神经网络图像分类中最常用的方法。我们有一组图像X和对应的标签或类z。设C为类别数,f(X)为X∈X的某个神经网络的输出,目标是使输出与标签之间的损失函数最小化。测量f(x)和相应的z之间的差的一个常用的损失函数是交叉熵。

迁移学习

监督学习的一个限制因素是标签的可用性。创建这些标签可能很昂贵,因此限制了它们的数量。克服这一局限的一个方法是使用迁移学习。

迁移学习描述了训练神经网络的两个阶段的过程。第一个阶段是在大型通用数据集(如ImageNet[26])上进行有无监督的训练。第二步是使用经过训练的权重并对目标数据集进行微调。大量的文献表明,即使在小的领域特定数据集[40]上,迁移学习也能改善和稳定训练。

半监督学习

半监督学习是无监督学习和监督学习的混合.

Self-supervised 自监督学习

自监督使用一个借托pretext任务来学习未标记数据的表示。借托pretext任务是无监督的,但学习表征往往不能直接用于图像分类,必须进行微调。因此,自监督学习可以被解释为一种无监督的、半监督的或其自身的一种策略。我们将自我监督学习视为一种特殊的学习策略。在下面,我们将解释我们是如何得出这个结论的。如果在微调期间需要使用任何标签,则不能将该策略称为无监督的。这与半监督方法也有明显的区别。标签不能与未标记的数据同时使用,因为借托pretext任务是无监督的,只有微调才使用标签。对我们来说,将标记数据的使用分离成两个不同的子任务本身就是一种策略的特征。

2.2 分类技术集合

在减少监督的情况下,可以使用不同的技术来训练模型。在本节中,我们将介绍一些在文献中多种方法中使用的技术。

一致性正则化 Consistency regularization

一个主要的研究方向是一致性正则化。在半监督学习过程中,这些正则化被用作数据非监督部分的监督损失的附加损失。这种约束导致了改进的结果,因为在定义决策边界时可以考虑未标记的数据[42,28,49]。一些自监督或无监督的方法甚至更进一步,在训练中只使用这种一致性正则化[21,2]。

虚拟对抗性训练(VAT)

VAT[34]试图通过最小化图像与转换后的图像之间的距离,使预测不受小转换的影响。

互信息(MI)

MI定义为联合分布和边缘分布[8]之间的Kullback Leiber (KL)散度。

熵最小化(EntMin)

Grandvalet和Bengio提出通过最小化熵[15]来提高半监督学习的输出预测。

Overclustering

过度聚类在减少监督的情况下是有益的,因为神经网络可以自行决定如何分割数据。这种分离在有噪声的数据中或在中间类被随机分为相邻类的情况下是有用的。

Pseudo-Labels

一种估计未知数据标签的简单方法是伪标签

3. 图像分类模型

3.1 半监督学习

四种选择的半监督方法的图解——使用的方法在每张图像下面给出。输入在左边的蓝色方框中给出。在右侧提供了该方法的说明。一般来说,这个过程是自上而下组织的。首先,输入图像经过无或两个不同的随机变换预处理。自动增广[9]是一种特殊的增广技术。下面的神经网络使用这些预处理图像(x, y)作为输入。损失的计算(虚线)对于每种方法都是不同的,但是共享公共部分。所有的方法都使用了标记和预测分布之间的交叉熵(CE)。所有的方法还使用了不同预测输出分布(Pf(x), Pf(y))之间的一致性正则化。

3.2 自监督学习

四种选择的自我监督方法的图解——使用的方法在每张图像下面给出。输入在左边的红色方框中给出。在右侧提供了该方法的说明。微调部分不包括在内。一般来说,这个过程是自上而下组织的。首先,对输入图像进行一两次随机变换预处理或分割。下面的神经网络使用这些预处理图像(x, y)作为输入。损失的计算(虚线)对于每种方法都是不同的。AMDIM和CPC使用网络的内部元素来计算损失。DeepCluster和IIC使用预测的输出分布(Pf(x)、Pf(y))来计算损耗

3.3 21种图像分类方法比较

21种图像分类方法及其使用技术的概述——在左侧,第3节中回顾的方法按学习策略排序。第一行列出了在2.2小节中讨论过的可能的技术。根据是否可以使用带标签的数据,将这些技术分为无监督技术和有监督技术。技术的缩写也在第2.2小节中给出。交叉熵(Cross-entropy, CE)将CE的使用描述为训练损失的一部分。微调(FT)描述了交叉熵在初始训练后(例如在一个借口任务中)对新标签的使用。(X)指该技术不是直接使用,而是间接使用。个别的解释由所指示的数字给出。1 - MixMatch通过锐化预测[3],隐式地实现了熵最小化。2 - UDA预测用于过滤无监督数据的伪标签。3 -尽量减少相互信息的目的作为借口任务,例如视图之间的[2]或层之间的[17]。4 -信息的丢失使相互信息间接[43]最大化。5 - Deep Cluster使用K-Means计算伪标签,以优化分配为借口任务。6 - DAC使用元素之间的余弦距离来估计相似和不相似的项。可以说DAC为相似性问题创建了伪标签。

4. 实验比较结果

报告准确度的概述——第一列说明使用的方法。对于监督基线,我们使用了最好的报告结果,作为其他方法的基线。原始论文在准确度后的括号内。第二列给出了体系结构及其参考。第三列是预印本的出版年份或发行年份。最后四列报告了各自数据集的最高准确度分数%。

5 结论

在本文中,我们概述了半监督、自监督和非监督技术。我们用21种不同的方法分析了它们的异同和组合。这项分析确定了几个趋势和可能的研究领域。

我们分析了不同学习策略(半监督学习策略、自监督学习策略和无监督学习策略)的定义,以及这些学习策略中的常用技术。我们展示了这些方法一般是如何工作的,它们使用哪些技术,以及它们可以被归类为哪种策略。尽管由于不同的体系结构和实现而难以比较这些方法的性能,但我们确定了三个主要趋势。

ILSVRC-2012的前5名正确率超过90%,只有10%的标签表明半监督方法适用于现实问题。然而,像类别不平衡这样的问题并没有被考虑。未来的研究必须解决这些问题。

监督和半监督或自监督方法之间的性能差距正在缩小。有一个数据集甚至超过了30%。获得可与全监督学习相比的结果的标签数量正在减少。未来的研究可以进一步减少所需标签的数量。我们注意到,随着时间的推移,非监督方法的使用越来越少。这两个结论使我们认为,无监督方法在未来的现实世界中对图像分类将失去意义。

我们的结论是,半监督和自监督学习策略主要使用一套不同的技术。通常,这两种策略都使用不同技术的组合,但是这些技术中很少有重叠。S4L是目前提出的唯一一种消除这种分离的方法。我们确定了不同技术的组合有利于整体性能的趋势。结合技术之间的微小重叠,我们确定了未来可能的研究机会。

参考文献:

[1] B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson. There are many consistent explanations of unlabeled data: Why you should average. In International Conference on Learning Representations, 2019.

[2] P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by maximizing mutual information across views. In Advances in Neural Information Processing Systems, pages 15509–15519, 2019.

[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural Information Processing Systems, pages 5050–5060, 2019.

[4] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 132–149, 2018.

[5] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan. Deep adaptive image clustering. 2017 IEEE International Conference on Computer Vision (ICCV), pages 5880–5888, 2017.

成为VIP会员查看完整内容
0
133

题目: A survey of deep learning techniques for autonomous driving

简介: 本文目的是研究自动驾驶中深度学习技术的最新技术。首先介绍基于AI的自动驾驶架构、CNN和RNN、以及DRL范例。这些方法为驾驶场景感知、路径规划、行为决策和运动控制算法奠定基础。该文研究深度学习方法构建的模块化“感知-规划-执行”流水线以及将传感信息直接映射到转向命令的端到端系统。此外,设计自动驾驶AI架构遇到的当前挑战,如安全性、训练数据源和计算硬件等也进行了讨论。该工作有助于深入了解深度学习和自动驾驶AI方法的优越性和局限性,并协助系统的设计选择。

成为VIP会员查看完整内容
0
55
小贴士
相关VIP内容
专知会员服务
80+阅读 · 2020年6月14日
专知会员服务
58+阅读 · 2020年5月5日
专知会员服务
166+阅读 · 2020年4月19日
专知会员服务
77+阅读 · 2020年3月12日
机器翻译深度学习最新综述
专知会员服务
73+阅读 · 2020年2月20日
注意力机制模型最新综述
专知会员服务
191+阅读 · 2019年10月20日
深度学习自然语言处理综述,266篇参考文献
专知会员服务
157+阅读 · 2019年10月12日
相关论文
Davide Abati,Jakub Tomczak,Tijmen Blankevoort,Simone Calderara,Rita Cucchiara,Babak Ehteshami Bejnordi
5+阅读 · 2020年3月31日
Image Segmentation Using Deep Learning: A Survey
Shervin Minaee,Yuri Boykov,Fatih Porikli,Antonio Plaza,Nasser Kehtarnavaz,Demetri Terzopoulos
32+阅读 · 2020年1月15日
Ziwei Zhang,Peng Cui,Wenwu Zhu
40+阅读 · 2018年12月11日
Borja Ibarz,Jan Leike,Tobias Pohlen,Geoffrey Irving,Shane Legg,Dario Amodei
4+阅读 · 2018年11月15日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
4+阅读 · 2018年10月11日
Image Captioning based on Deep Reinforcement Learning
Haichao Shi,Peng Li,Bo Wang,Zhenyu Wang
7+阅读 · 2018年9月13日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Mohammadhosein Hasanbeig,Alessandro Abate,Daniel Kroening
5+阅读 · 2018年4月22日
Holger R. Roth,Chen Shen,Hirohisa Oda,Masahiro Oda,Yuichiro Hayashi,Kazunari Misawa,Kensaku Mori
5+阅读 · 2018年3月23日
Yeeleng S. Vang,Zhen Chen,Xiaohui Xie
8+阅读 · 2018年2月3日
Top