您决定研究机器学习 - 无论是因为正在找工作、开始一个新项目,还是只是认为自动驾驶汽车很酷。但应该从哪里开始呢?作为一名软件开发者,很容易被这些概念所吓倒。好消息是,这并不需要那么困难。通过一行一行地编写代码来掌握机器学习,从简单的学习程序到真正的深度学习系统。通过分解难以理解的话题使其更易于理解,并通过实际操作来增强自己的信心。
从零开始剥去机器学习的神秘面纱,直到深度学习。机器学习可能会让人望而却步,因为它依赖于大多数程序员在日常工作中不会遇到的数学和算法。采用亲手操作的方法,自己编写Python代码,不使用任何库来模糊真正发生的事情。在设计中迭代,并随着进行增加复杂性。
从零开始构建一个使用有监督学习的图像识别应用。使用线性回归预测未来。深入了解梯度下降,这是驱动大多数机器学习的基础算法。创建感知机来分类数据。构建神经网络来处理更复杂和高级的数据集。使用反向传播和批处理训练和完善这些网络。将神经网络分层,消除过拟合,并添加卷积,将您的神经网络转变为真正的深度学习系统。
从头开始,通过编码来掌握机器学习。 这是一本面向那些希望从零开始学习机器学习的开发者的书。机器学习是一个宽广的领域,没有任何一本书可以涵盖所有内容。我们将重点关注当前最为重要的三个机器学习方面:有监督学习、神经网络和深度学习。在阅读本书的过程中,我们将深入探讨这些术语,但以下是一个概述和一些简短的定义,帮助您开始: