偏标记学习是一个典型的弱监督学习问题,每个训练示例都与一组候选标签相关联,其中只有一个标签为真。大多数现有的方法都假设每个训练示例的候选标记是由真实标记和随机选取的不正确的标签组成的。然而,这种假设是不切实际的,因为候选标签总是依赖实例的。
在本文中,我们考虑了实例依赖的偏标记学习,并假设每个实例都与每个标记的潜在标记分布相关联,其中标记分布代表了每个标记描述特征的程度。描述程度越高的不正确标签更有可能被注释为候选标签。因此,潜在标记分布是部分标签示例中必不可少的标记信息,值得用于预测模型训练。基于这种考虑,我们提出了一种新的偏标记学习方法,用标记增强 (LE) 恢复标记分布,并在每个阶段迭代训练预测模型。具体地说,我们假设潜在标记分布的真实后验密度是由推理模型参数化的变分近似狄利克雷密度,利用变分后验产生的标记分布对预测模型进行训练。最后在基准测试和真实数据集上进行实验,验证了该方法的有效性。
论文标题:
Instance-Dependent Partial Label Learning
论文链接:
https://www.zhuanzhi.ai/paper/70739bd32a8310f090296cf05f3ba5ae
代码链接: