The Non-Local Network (NLNet) presents a pioneering approach for capturing long-range dependencies, via aggregating query-specific global context to each query position. However, through a rigorous empirical analysis, we have found that the global contexts modeled by non-local network are almost the same for different query positions within an image. In this paper, we take advantage of this finding to create a simplified network based on a query-independent formulation, which maintains the accuracy of NLNet but with significantly less computation. We further observe that this simplified design shares similar structure with Squeeze-Excitation Network (SENet). Hence we unify them into a three-step general framework for global context modeling. Within the general framework, we design a better instantiation, called the global context (GC) block, which is lightweight and can effectively model the global context. The lightweight property allows us to apply it for multiple layers in a backbone network to construct a global context network (GCNet), which generally outperforms both simplified NLNet and SENet on major benchmarks for various recognition tasks. The code and configurations are released at https://github.com/xvjiarui/GCNet.
翻译:非本地网络(NLNet)通过将具体查询的全球背景汇总到每个查询位置,为捕捉长期依赖性提供了一种开拓性的方法,将每个查询点汇总到每个查询位置上。然而,通过严格的实证分析,我们发现非本地网络模拟的全球背景对图像中的不同查询位置几乎是一样的。在本文件中,我们利用这一发现,在一个自问的配方的基础上创建了一个简化的网络,该配方保持了NLNet的准确性,但计算量要少得多。我们还注意到,这一简化的设计与Squeze-Exucation 网络(SENet)有着相似的结构。因此,我们将其统一为全球背景建模的三步通用框架。在总体框架内,我们设计了一个更好的即时空框架,称为全球环境区块,这个区块是轻量的,可以有效地模拟全球环境。轻量的属性使我们能够在一个主干网中将其应用于多层,以构建一个全球背景网络(GCNet),这个主干网通常比各种识别任务的主要基准的简化NLNet和SENet都差。在http://githubub.comvarji/vji.