摘要: 近年来,由于大规模数据集的出现,图像语义分割技术得到快速发展。但在实际场景中,并不容易获取到大规模、高质量的图像,图像的标注也需要消耗大量的人力和时间成本。为了摆脱对样本数量的依赖,小样本语义分割技术逐渐成为研究热点。当前小样本语义分割的方法主要利用了元学习的思想,按照不同的模型结构可划分为基于孪生神经网络、基于原型网络和基于注意力机制三大类。基于近年来小样本语义分割的发展现状,介绍了小样本语义分割各类方法的发展及优缺点,以及小样本语义分割任务中常用的数据集及实验设计。在此基础上,总结了小样本语义分割技术的应用场景及未来的发展方向。